高级检索

波动工况下点焊质量在线预测及模型解释

吕天乐, 齐苗苗, 闫德俊, 黎书华, 夏裕俊, 李永兵

吕天乐, 齐苗苗, 闫德俊, 黎书华, 夏裕俊, 李永兵. 波动工况下点焊质量在线预测及模型解释[J]. 焊接学报, 2022, 43(11): 91-100. DOI: 10.12073/j.hjxb.20220702002
引用本文: 吕天乐, 齐苗苗, 闫德俊, 黎书华, 夏裕俊, 李永兵. 波动工况下点焊质量在线预测及模型解释[J]. 焊接学报, 2022, 43(11): 91-100. DOI: 10.12073/j.hjxb.20220702002
LV Tianle, QI Miaomiao, YAN Dejun, LI Shuhua, XIA Yujun, LI Yongbing. Online prediction of resistance spot weld quality and model explanation under fluctuating conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 91-100. DOI: 10.12073/j.hjxb.20220702002
Citation: LV Tianle, QI Miaomiao, YAN Dejun, LI Shuhua, XIA Yujun, LI Yongbing. Online prediction of resistance spot weld quality and model explanation under fluctuating conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 91-100. DOI: 10.12073/j.hjxb.20220702002

波动工况下点焊质量在线预测及模型解释

基金项目: 国家自然科学基金项目(52025058);国防基础科研项目(JCKY2021203B074);工信部高技术船舶项目(MC-201704-Z02)
详细信息
    作者简介:

    吕天乐,硕士研究生;主要研究方向为铝合金电阻点焊及在线监测;Email: ltl1715@sjtu.edu.cn

    通讯作者:

    夏裕俊,助理研究员;Email: xyjdbgt6509@sjtu.edu.cn.

  • 中图分类号: TG 453.9

Online prediction of resistance spot weld quality and model explanation under fluctuating conditions

  • 摘要: 基于电阻点焊过程的多传感信号特征,面向多种板材组合建立焊点质量在线预测模型,研究了异常工况波动对四类机器学习回归模型的影响,分析了不同模型和输入变量对含异常工况试验数据集的适应性,并采用Shapley值、t-SNE等方法对波动工况下的模型性能进行解释.结果表明,高斯过程回归模型和电阻 + 力信号具有最佳的熔核直径预测性能,焊接电流、热输入能量和电极位移峰值特征对于波动工况具有良好普适性.此外,异常工况引起的信号特征分布差异会显著影响回归预测模型的泛化性能,应尽量减少训练集与数据集差异以提高焊点质量预测的准确性.
    Abstract: Based on the features of multi-sensing signals in resistance spot welding process, online prediction models were established for the spot weld quality of different stack-ups in this paper. The influence of fluctuating welding conditions fluctuation on four machine learning regression models was studied, and the adaptability of different models and input variables on the database containing data of abnormal conditions was analyzed. Shapley value, and t-SNE methods were used to explain the model performance under fluctuating conditions. The results show that the Gaussian process regression model and resistance + force signal input had the best prediction performance of nugget diameter. Features of welding current, heat input and peak value of electrode displacement had good universality under fluctuating conditions. Besides, the difference of feature distribution caused by condition fluctuation could significantly influence the generalization performance of regression models. Thereby, the reduction of the difference between training set and test set could improve the prediction accuracy.
  • 图  1   标准、倾斜、边距和间隙工况的试样尺寸及设置方法示意图(mm)

    Figure  1.   Schematics of the specimens and setup methods of standard, electrode angle, edge proximity and initial gap conditions (mm). (a) standard condition; (b) electrode angle condition; (c) edge proximity condition; (d) initial gap condition

    图  2   不同板材组合的熔核直径

    Figure  2.   Nugget diameter of different stack-ups

    图  3   不同工况的熔核直径

    Figure  3.   Nugget diameter of different conditions

    图  4   回归预测建模流程图

    Figure  4.   Flowchart of regression prediction modeling

    图  5   过程信号特征提取示意图

    Figure  5.   Schematics of feature extraction methods of dynamic resistance, electrode force and electrode displacement signals. (a) dynamic resistance features; (b)electrode force features; (c) electrode displacement features

    图  6   不同机器学习回归模型的预测—实测值

    Figure  6.   Prediction-response results of different machine learning regression models. (a) multiple linear regression; (b) Gaussian process regression; (c) support vector regression; (d) multilayer perceptron regression

    图  7   输入特征值对GPR模型的Shapley值分布

    Figure  7.   Shapley value distribution of input features on GPR models. (a) model trained on ST dataset; (b) model trained on ALL dataset

    图  8   GPR模型泛化性测试的预测—实测值

    Figure  8.   Prediction-response results of GPR model generalization test. (a) training result in ST dataset; (b) training result in ALL-ST dataset

    图  9   不同工况下的特征分布

    Figure  9.   Feature distribution of in different welding conditions

    表  1   DP590和BUFD的化学成分(质量分数, %)

    Table  1   The chemical components of DP590 and BUFD

    材料CSiMnPS其它Fe
    DP5900.0550.5071.6160.0100.0040.048余量
    BUFD0.0020.0120.0030.0060.030余量
    下载: 导出CSV

    表  2   DP590和BUFD的力学性能

    Table  2   The mechanical properties of DP590 and BUFD

    材料屈服强度ReL/MPa抗拉强度Rm/MPa断后伸长率A(%)
    DP59035762724.9
    BUFD16228849.0
    下载: 导出CSV

    表  3   焊接方案设计

    Table  3   Welding schedule design.

    序号上板下板焊接电流
    I/kA
    电极力
    F/kN
    焊接时间t/ms
    10.8 mm厚 DP5900.8 mm厚 DP5905 ~ 102.6 ~ 3.6100 ~ 200
    20.8 mm厚 BUFD1.6 mm厚 BUFD5 ~ 102.6 ~ 3.6100 ~ 200
    30.8 mm厚 DP5901.6 mm厚 BUFD5 ~ 102.6 ~ 3.6100 ~ 200
    41.6 mm厚 BUFD1.6 mm厚 DP5905 ~ 102.6 ~ 3.6100 ~ 200
    下载: 导出CSV

    表  4   线性回归模型的预测性能对比

    Table  4   Performance comparison of multiple linear regression models.

    模型A±1 mm (%)RMSE/mm
    标准 MLR86.820.695
    含交互项 MLR11.7535.657
    稳健性 MLR85.670.728
    逐步 MLR89.680.665
    下载: 导出CSV

    表  5   高斯过程回归模型的预测性能对比

    Table  5   Performance comparison of Gaussian process regression models.

    模型A±1 mm (%)RMSE/mm
    二次有理GPR90.540.600
    指数GPR91.120.571
    平方指数GPR90.540.905
    可优化GPR91.120.570
    下载: 导出CSV

    表  6   支持向量回归模型的预测性能对比

    Table  6   Performance comparison of support vector regression models.

    模型A±1 mm (%)RMSE/mm
    线性SVR86.530.696
    多项式SVR二次89.400.676
    三次83.090.831
    高斯SVR粗略86.250.725
    中等89.400.637
    精细75.070.966
    可优化SVR87.960.659
    混合核函数SVR87.110.761
    下载: 导出CSV

    表  7   神经网络回归模型的预测性能对比

    Table  7   Performance comparison of multilayer perceptron regression models.

    模型A±1 mm (%)RMSE/mm
    MLP节点数
    单层MLP10节点81.950.907
    50节点83.890.875
    150节点86.240.768
    10节点83.670.828
    双层MLP50节点83.950.818
    150节点85.570.765
    10节点82.230.876
    50节点85.960.777
    三层MLP150节点86.250.728
    500节点88.250.713
    1000节点87.380.749
    ResNet-MLP150节点17.233.151
    500节点87.390.736
    下载: 导出CSV

    表  8   优化后回归模型的预测性能及稳定性

    Table  8   Prediction performance and stability of optimized regression models.

    模型A±1 mm (%)RMSE/mm
    MLR86.61 ± 1.130.777 ± 0.038
    GPR90.13 ± 0.510.614 ± 0.023
    SVR88.08 ± 0.670.671 ± 0.014
    MLP87.45 ± 0.900.743 ± 0.037
    下载: 导出CSV

    表  9   不同信号特征输入下GPR模型的预测性能

    Table  9   Prediction performance of GPR models with different input signals.

    输入信号训练集A±1 mm (%)RMSE/mm
    工艺参数ST88.30 ± 2.120.706 ± 0.045
    ALL76.68 ± 0.840.951 ± 0.010
    电阻ST92.71 ± 1.950.604 ± 0.036
    ALL85.80 ± 2.680.729 ± 0.040
    电极力ST90.11 ± 3.900.660 ± 0.173
    ALL85.27 ± 2.010.751 ± 0.027
    位移ST94.01 ± 2.600.635 ± 0.035
    ALL88.56 ± 0.840.716 ± 0.029
    电阻 + 电极力ST92.06 ± 3.900.607 ± 0.054
    ALL91.24 ± 1.510.601 ± 0.026
    电阻 + 位移ST90.32 ± 3.900.657 ± 0.135
    ALL89.26 ± 2.180.628 ± 0.055
    电极力 + 位移ST93.23 ± 3.250.628 ± 0.060
    ALL88.32 ± 1.680.683 ± 0.057
    下载: 导出CSV

    表  10   GPR模型对波动工况的泛化性测试

    Table  10   Generalization test of GPR model on welding condition fluctuation.

    训练集工况A±1 mm (%)RMSE/
    mm
    测试集工况A±1 mm (%)RMSE/
    mm
    标准94.100.567倾斜 + 边距 + 间隙79.180.833
    标准 + 倾斜 + 边距92.240.590间隙92.390.581
    标准 + 倾斜 + 间隙88.890.585边距51.211.361
    标准 + 边距 + 间隙91.600.583倾斜69.991.045
    下载: 导出CSV
  • [1] 王敏. 电阻焊在汽车工业中的应用[J]. 电焊机, 2003, 33(1): 1 − 6.

    Wang Min. Application of resistance welding in automotive industry[J]. Electric Welding Machine, 2003, 33(1): 1 − 6.

    [2]

    Cho Y, Li W, Hu S J. Design of experiment analysis and weld lobe estimation for aluminum resistance spot welding[J]. Welding Journal, 2006, 85(3): 45s − 51s.

    [3] 中国机械工程学会焊接学会电阻焊专业委员会(III). 电阻焊理论与实践[M]. 北京: 机械工业出版社, 1994.

    Professional Committee of Resistance Welding (III) of Welding Society of China Mechanical Engineering Society. Theory and Practice of Resistance Welding[M]. Beijing: China Machinery Industry Press, 1994.

    [4] 夏裕俊, 李永兵, 楼铭, 等. 电阻点焊质量监控技术研究进展与分析[J]. 中国机械工程, 2020, 31(1): 100 − 125. doi: 10.3969/j.issn.1004-132X.2020.01.011

    Xia Yujun, Li Yongbin, Lou Ming, et al. Recent advances and analysis of quality monitoring and control technologies for RSW[J]. China Mechanical Engineering, 2020, 31(1): 100 − 125. doi: 10.3969/j.issn.1004-132X.2020.01.011

    [5]

    Dickinson D W, Franklin J E, Stanya A. Characterization of spot welding behavior by dynamic electrical parameter monitoring[J]. Welding Journal, 1980, 59(6): 170s − 176s.

    [6]

    Chang H S, Kwon H C. In-process monitoring of micro resistance spot weld quality using accelerometer[J]. Korea Journal of Welding and Joining, 2011, 29(1): 115 − 122. doi: 10.5781/KWJS.2011.29.1.115

    [7]

    Zhang H Y, Hu J S. Resistance welding: Fundamentals and applications[M]. London: CRC Press, 2011.

    [8]

    Chen G, Sheng B, Luo R, et al. A parallel strategy for predicting the quality of welded joints in automotive bodies based on machine learning[J]. Journal of Manufacturing Systems, 2022, 62: 636 − 649. doi: 10.1016/j.jmsy.2022.01.011

    [9]

    Gavidel S Z, Lu S, Rickli J. Performance analysis and comparison of machine learning algorithms for predicting nugget width of resistance spot welding joints[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 3779 − 3796. doi: 10.1007/s00170-019-03821-z

    [10]

    Zhao D, Bezgans Y, Wang Y, et al. Performances of dimension reduction techniques for welding quality prediction based on the dynamic resistance signal[J]. Journal of Manufacturing Processes, 2020, 58: 335 − 343. doi: 10.1016/j.jmapro.2020.08.037

    [11]

    El-Sari B, Biegler M, Rethmeier M. Investigation of the extrapolation capability of an artificial neural network algorithm in combination with process signals in resistance spot welding of advanced high-strength steels[J]. Metals, 2021, 11(11): 1874. doi: 10.3390/met11111874

    [12]

    Zhou B F, Pychynski T, Reischl M, et al. Comparison of machine learning approaches for time-series-based quality monitoring of resistance spot welding[J]. Archives of Data Science: Series A, 2018, 5(1): 1 − 17.

    [13]

    Xia Y J, Su Z W, Li Y B, et al. Online quantitative evaluation of expulsion in resistance spot welding[J]. Journal of Manufacturing Processes, 2019, 46(10): 34 − 43.

    [14]

    American welding society. Specification for automotive weld quality-resistance spot welding of steel[S]. AWS/ANSI Standard AWS D8.1M, 2013.

    [15]

    Zhao D W, Wang Y X, Liang D J. Correlating variations in the dynamic power signature to nugget diameter in resistance spot welding using Kriging model[J]. Measurement, 2019, 135: 6 − 12. doi: 10.1016/j.measurement.2018.11.025

    [16]

    Simončič S, Podržaj P. Resistance spot weld strength estimation based on electrode tip displacement/velocity curve obtained by image processing[J]. Science & Technology of Welding & Joining, 2014, 19(6): 468 − 475.

    [17]

    Wang L, Hou Y, Zhang H, et al. A new measurement method for the dynamic resistance signal during the resistance spot welding process[J]. Measurement Science and Technology, 2016, 27(9): 095009. doi: 10.1088/0957-0233/27/9/095009

    [18]

    Min J. Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies[J]. Journal of Materials Processing Technology, 2003, 132: 102 − 113. doi: 10.1016/S0924-0136(02)00409-0

    [19]

    Lee J, Noh I, Jeong S I, et al. Development of real-time diagnosis framework for angular misalignment of robot spot-welding system based on machine learning[J]. Procedia Manufacturing, 2020, 48: 1009 − 1019. doi: 10.1016/j.promfg.2020.05.140

    [20]

    Zhou L, Xia Y J, Shen Y, et al. Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding[J]. Journal of Manufacturing Processes, 2021, 63(3): 98 − 108.

  • 期刊类型引用(5)

    1. 王通,孟惠民,葛鹏飞,李全德,巩秀芳,倪荣,姜英,龚显龙,戴君,隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH_4H_2PO_4溶液中的电化学腐蚀行为研究. 中国腐蚀与防护学报. 2022(04): 551-562 . 百度学术
    2. 苍雨,黄毓晖,翁硕,轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响. 中国腐蚀与防护学报. 2021(03): 318-326 . 百度学术
    3. 黄毓晖,张建辉,胡语林,孙雯暄,徐宇斌,汪毅豪. 核电汽轮机转子堆焊焊接接头的电偶腐蚀行为及有限元仿真. 焊接学报. 2021(08): 33-39+99 . 本站查看
    4. 陈君,康凯,冯钜,熊长奇,曹丹,尹杰. 压水堆核电站结构材料的腐蚀行为研究进展. 西华大学学报(自然科学版). 2020(03): 104-112 . 百度学术
    5. 黄毓晖,司晓法,翁硕,轩福贞. 疲劳损伤对核电汽轮机焊接转子接头应力腐蚀开裂敏感性的影响. 焊接学报. 2020(04): 12-19+37+97-98 . 本站查看

    其他类型引用(3)

图(9)  /  表(10)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  86
  • PDF下载量:  63
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回