高级检索

直流磁场作用下铜蒸气对电弧特性的影响

Effect of copper vapor on arc characteristics under DC magnetic field

  • 摘要: 为研究直流纵向磁场作用下金属蒸气对熔化极气体保护焊(gas metal arc welding,GMAW)电弧特性的影响,将钨铜复合材料制成特殊钨极代替熔化极产生铜蒸气,利用高速摄像法、光谱测温法以及小孔探测法对其进行了测试研究. 结果表明,铜蒸气进入电弧等离子体后,电弧出现分层,随铜蒸气含量的增加,弧芯外围区域半径随之增加,弧芯区的尺寸减小. 当铜含量为0%时,外加直流磁场后,电弧在阴极区收缩阳极区扩张,其轴向最高温度明显上升;电弧压力峰值偏离轴线,在外加磁场强度为0.015 T时呈现双峰分布,电流密度与电弧压力分布趋势相似;随着铜蒸气的介入,弧芯区电弧表现为阴极区收缩,阳极区扩张,弧芯周围的铜蒸气则明显收缩,电弧轴向最高温度上升的幅度明显降低. 随着铜含量的增加,电弧的导电面积增加,环向电磁力作用减弱,电弧中心压力下降幅度显著降低,阳极电流密度的分布趋势逐渐趋于扁平化.

     

    Abstract: In order to study the effect of metal vapor on the arc characteristics of gas metal arc welding (GMAW) under the action of DC longitudinal magnetic field, tungsten-copper composites were made into special tungsten electrode instead of molten electrode to produce copper vapor, which was tested and studied by high speed camera method, spectral temperature measurement method and keyhole detection method. The results show that when copper vapor enters the arc plasma, the arc appears delamination. With the increase of copper vapor content, the outer radius of arc core increases, and the size of the arc core area decreases. When the Cu content is 0%, after the DC magnetic field is applied, the arc shrinks in the cathode and expands in anode with an notable increase in the axial maximum temperature of the arc. The peak value of the arc pressure deviates from the axis, and when the magnetic field intensity B = 0.015 T , the arc pressure shows a bimodal distribution. The distribution of current density is similar to that of arc pressure. With the intervention of copper vapor, the arc in the arc core region shrinks in the cathode and expands in the anode region. While the copper vapor around the arc core shrinks obviously, and the rise of the maximum axial temperature of the arc decreases obviously. At the same time, the copper vapor expands the conductive area of the arc, weakens the circumferential electromagnetic force. The pressure at the arc center decreases, and the distribution of anode current density was flattened.

     

/

返回文章
返回