高级检索

激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能

张敏, 王新宝, 王浩军, 马克, 朱子越, 张志强

张敏, 王新宝, 王浩军, 马克, 朱子越, 张志强. 激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能[J]. 焊接学报, 2023, 44(7): 16-23. DOI: 10.12073/j.hjxb.20220628001
引用本文: 张敏, 王新宝, 王浩军, 马克, 朱子越, 张志强. 激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能[J]. 焊接学报, 2023, 44(7): 16-23. DOI: 10.12073/j.hjxb.20220628001
ZHANG Min, WANG Xinbao, WANG Haojun, MA Ke, ZHU Ziyue, ZHANG Zhiqiang. Microstructure and mechanical properties of laser cladding TC4/Inconel 625/316L stainless steel gradient material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 16-23. DOI: 10.12073/j.hjxb.20220628001
Citation: ZHANG Min, WANG Xinbao, WANG Haojun, MA Ke, ZHU Ziyue, ZHANG Zhiqiang. Microstructure and mechanical properties of laser cladding TC4/Inconel 625/316L stainless steel gradient material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 16-23. DOI: 10.12073/j.hjxb.20220628001

激光熔覆TC4/Inconel 625/316L不锈钢梯度材料组织与性能

基金项目: 国家自然科学基金资助项目(51974243);陕西省重点研发计划项目(2023-YBGY-470);西安市科技计划项目(21XJZZ0057).
详细信息
    作者简介:

    张敏,教授,博士;主要从事焊接成形过程的力学行为及其结构质量控制、焊接凝固过程的组织演变行为及其先进焊接材料的研究;Email: zhmmn@xaut.edu.cn

  • 中图分类号: TG 401

Microstructure and mechanical properties of laser cladding TC4/Inconel 625/316L stainless steel gradient material

  • 摘要: 为了提高不锈钢工件的综合性能,采用激光熔覆工艺在不锈钢上制备TC4熔覆层、Inconel 625熔覆层作为过渡层,通过光学显微镜、扫描电子显微镜、X射线衍射仪、能谱仪、硬度计、摩擦磨损和电化学测试等研究了TC4熔覆层微观组织、显微硬度、电化学性能和摩擦磨损性能. 结果表明,熔覆层成形质量良好且具有均匀致密的微观组织. 熔覆过程中,由于元素扩散与高温作用发生的共晶反应,熔覆层中生成CrNi2和Ti2Ni增强相,大大提升了熔覆层的硬度与耐磨性;TC4熔覆层磨损机制主要为磨粒磨损与氧化磨损,耐磨性优于基体;TC4熔覆层的腐蚀电流密度小于基体,耐蚀性显著高于基体.
    Abstract: In order to improve the comprehensive performance of stainless steel workpiece, a TC4 cladding layer was prepared on stainless steel by laser cladding process, with Inconel 625 cladding layer as the transition layer. The microstructure, microhardness, electrochemical properties and tribological properties of TC4 cladding layer were studied. The results show that the cladding layer has high forming quality and uniform and dense microstructure. During the cladding process, the eutectic reaction caused by element diffusion and high temperature leads to the formation of CrNi2 and Ti2Ni reinforced phases in the cladding layer, which has signifcantley improved the hardness and wear resistance of the cladding layer. The wear mechanism of TC4 cladding layer is mainly abrasive wear and oxidation wear, and the wear resistance is better than that of the matrix. The corrosion current density is lower, and the corrosion resistance of TC4 cladding layer is significantly higher than that of the matrix.
  • 图  1   TC4与Inconel 625熔覆层微观组织

    Figure  1.   Microstructure of TC4 and Inconel 625 cladding layers. (a) TC4; (b) Inconel 625

    图  2   界面的SEM图像及其元素扩散情况

    Figure  2.   SEM images of interfaces and its element diffusion. (a) interface of TC4−Inconel 625; (b) line scanning results of TC4−Inconel 625; (c) interface of Inconel 625−316L; (d) line scanning results of Inconel 625−316L

    图  3   TC4/Inconel 625/316L梯度材料XRD图谱

    Figure  3.   XRD images of TC4/Inconel 625/316L gradient material

    图  4   TC4−Inconel 625界面局部SEM图像

    Figure  4.   Partially SEM images of TC4−Inconel 625 fusion interfaces. (a) TC4; (b) Inconel 625

    图  5   试样的显微硬度曲线

    Figure  5.   Microhardness curve of sample

    图  6   316L不锈钢与TC4熔覆层的摩擦系数曲线

    Figure  6.   Coefficient of friction curve of the 316L stainless steel and TC4 cladding layer

    图  7   316L不锈钢与TC4熔覆层磨损形貌

    Figure  7.   Wear morphology of 316L stainless steel and TC4 cladding layer. (a) 316L stainless steel; (b) TC4 cladding layer

    图  8   316L不锈钢与TC4熔覆层开路电位曲线

    Figure  8.   Open circuit potential curves of 316L stainless steel and TC4 cladding layer. (a) 316L stainless steel; (b) TC4 cladding layer

    图  9   等效电路图和EIS拟合图

    Figure  9.   Equivalent circuit diagram and EIS fitting diagram. (a) equivalent circuit diagram of TC4 cladding layer; (b) equivalent circuit diagram of 316L stainless steel; (c) EIS fitting diagram of TC4 cladding layer; (d) EIS fitting diagram of 316L stainless steel

    图  10   TC4熔覆层与316L不锈钢的极化曲线

    Figure  10.   Polarization curves of TC4 cladding layer and substrate. (a) TC4 cladding layer; (b) 316L stainless steel

    表  1   基体和熔覆粉末的化学成分(质量分数,%)

    Table  1   Chemical compositions of substrate and cladding materials

    材料 C Al Cr Ni Nb Mo V Fe Ti
    316L 0.03 16 ~ 18 10 ~ 14 2 ~ 3 余量
    Inconel 625 0.03 20.21 余量 3.27 9.22 2.64
    TC4 <0.10 5.50 ~ 6.70 0.04 0.01 3.45 ~ 4.50 <0.25 余量
    下载: 导出CSV

    表  2   激光熔覆参数

    Table  2   Laser cladding parameters

    熔覆金属 光斑直径
    D/mm
    扫描速度
    v/(mm·s−1)
    送粉角度
    θ/(°)
    送粉速度
    vs/(g·min-1)
    Inconel 625 5 5.5 75 70
    TC4 2 18 75 90
    下载: 导出CSV

    表  3   点1的EDS分析结果(原子分数,%)

    Table  3   EDS analysis results of point 1

    Al Ti V Ni Nb Mo
    11.7 55.72 1.04 26.42 0.37 4.75
    下载: 导出CSV

    表  4   点2的EDS分析结果(原子分数,%)

    Table  4   EDS analysis results of point 2

    Cr Mn Si Ni Nb Mo
    6.03 19.79 29.51 15.20 20.90 8.57
    下载: 导出CSV

    表  5   316L不锈钢与TC4熔覆层磨损表面EDS元素分析(质量分数,%)

    Table  5   EDS elements analysis of wear surface of 316L stainless steel and TC4 cladding layer

    表面 Ti Al Cr Ni Fe O
    TC4 熔覆层 36.00 3.61 1.46 3.87 55.06
    316L不锈钢 8.40 1.60 70.43 19.57
    下载: 导出CSV

    表  6   316L不锈钢EIS 拟合参数

    Table  6   EIS fitting parameter table of 316L stainless steel

    腐蚀液体系
    中的s阻值
    R4/(Ω·cm2
    腐蚀层的电荷
    转移电阻
    R5/(Ω·cm2
    常相位器件的电容
    Q/(10−3F·cm2
    CPE2-T CPE2-P
    7.317 5 616 1.024 3 781.39
    下载: 导出CSV

    表  7   TC4熔覆层 EIS 拟合参数

    Table  7   EIS fitting parameter table of TC4 cladding layer

    腐蚀液体系中的阻值
    R1/(Ω·cm2
    腐蚀产物电容
    C1/(F·cm2)
    腐蚀层的电荷转移电阻
    R2/(Ω·cm2)
    腐蚀体系电荷移动阻值
    R3/(Ω·cm2)
    常相位器件的电容Q/(10−5F·cm2
    CPE2-T CPE2-P
    9.18 1 5.23 63×10−6 36.6 7 965 42 9.85 02 58 690
    下载: 导出CSV

    表  8   TC4熔覆层与316L不锈钢的极化参数

    Table  8   Polarization parameters of TC4 cladding layer and 316L stainless steel

    试样 自腐蚀电位Ecorr /V 自腐蚀电流Icorr /(10−5A·cm−2)
    TC4 熔覆层 −1.035 5 2.511 9
    316L不锈钢 −1.113 7 14.454
    下载: 导出CSV
  • [1] 李妍,张国庆,吕建伟,等. 316不锈钢在海洋平台上的应用探讨[J]. 涂层与防护, 2023, 44(2): 1 − 3,7.

    Li Yan, Zhang Guoqing, Lyu Jianwei, et al. Discussion on the application of 316 stainless steel on offshore platform[J]. Coatings and Protection, 2023, 44(2): 1 − 3,7.

    [2] 戴红霞, 冯晓丽. 厚度对车用304不锈钢表面激光熔覆钛涂层组织性能的影响[J]. 应用激光, 2020, 40(4): 626 − 630.

    Dai Hongxia, Feng Xiaoli. The effect of thickness on the microstructure and properties of laser clad titanium coating on 304 stainless steel for vehicles[J]. Applied Laser, 2020, 40(4): 626 − 630.

    [3] 卜哲涵. 车用301L不锈钢腐蚀和力学性能研究[D]. 兰州: 兰州理工大学, 2021.

    Bu Zhehan. Research on corrosion and mechanical properties of 301L stainless steel for vehicles [D]. Lanzhou: Lanzhou University of Technology, 2021.

    [4]

    Zhang Z, Yu T, Kovacevic R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC[J]. Applied Surface Science, 2017, 410: 225 − 240. doi: 10.1016/j.apsusc.2017.03.137

    [5] 张东玖,程从前,杨华,等. 钝化膜完整性对不锈钢海洋大气腐蚀的影响及其质检方法[J]. 腐蚀与防护, 2023, 44(5): 46 − 50,56.

    Zhang Dongjiu, Cheng Qianqian, Yang Hua, et al. Effect of passivated film integrity on Marine atmospheric corrosion of stainless steel and its quality inspection methods[J]. Corrosion and Protection, 2023, 44(5): 46 − 50,56.

    [6] 尹程辉, 潘吉林, 陈俊航, 等. 热带海洋大气环境下不锈钢的腐蚀寿命评估[J]. 表面技术, 2022, 44(5): 183 − 193, 246.

    Yin Chenghui, Pan Jilin, Chen Junhang, et al. Corrosion life assessment of stainless steel in tropical marine atmospheric environment[J]. Surface Technology, 2022, 44(5): 183 − 193, 246.

    [7] 杨青瑞. 固溶处理对304不锈钢腐蚀性能的影响及腐蚀演化模拟[D]. 银川: 宁夏大学, 2021.

    Yang Qingrui. Effect of solution treatment on corrosion properties of 304 stainless steel and simulation of corrosion evolution [D]. Yinchuan: Ningxia University, 2021.

    [8] 李琳. 316L不锈钢在高温环境的氧化行为及氧化膜的冲刷腐蚀研究[D]. 北京: 中国石油大学(北京), 2020.

    Li Lin. Research on the oxidation behavior of 316L stainless steel in high temperature environment and the erosion corrosion of oxide film [D]. Beijing: China University of Petroleum (Beijing), 2020.

    [9] 胡玉婷, 董鹏飞, 蒋立, 等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167 − 174.

    Hu Yuting, Dong Pengfei, Jiang Li, et al. Research on corrosion behavior of TC4 titanium alloy and 316L stainless steel riveted parts in marine atmospheric environment[J]. Chinese Journal of Corrosion and Protection, 2020, 40(2): 167 − 174.

    [10]

    Francis R. Galvanic corrosion of high alloy stainless steels in sea water[J]. British Corrosion Journal, 1994, 29(1): 53 − 57. doi: 10.1179/000705994798268033

    [11] 孙荣禄, 杨文杰, 张九海, 等. 钛合金与不锈钢真空扩散焊接的研究[J]. 佳木斯工学院学报, 1997(1): 46 − 50,79.

    Sun Ronglu, Yang Wenjie, Zhang Jiuhai, et al. Study on vacuum diffusion welding of titanium alloy and stainless steel[J]. Journal of Jiamusi Institute of Technology, 1997(1): 46 − 50,79.

    [12] 肖旋, 李海东, 刘海涛, 等. 钛合金真空与不锈钢管件真空扩散焊工艺研究[J]. 热加工工艺, 2022, 52(1): 21 − 24.

    Xiao Xuan, Li Haidong, Liu Haitao, et al. Research on vacuum diffusion welding process of titanium alloy and stainless steel pipe fittings[J]. Hot Working Process, 2022, 52(1): 21 − 24.

    [13]

    Kahraman N, Gülenç B, Findik F. Joining of titanium/stainless steel by explosive welding and effect on interface[J]. Journal of Materials Processing Technology, 2005, 169(2): 127 − 133. doi: 10.1016/j.jmatprotec.2005.06.045

    [14] 张志强, 杨凡, 张天刚, 等. 激光熔覆碳化钛增强钛基复合涂层研究进展[J]. 表面技术, 2020, 49(10): 138 − 151,168.

    Zhang Zhiqiang, Yang Fan, Zhang Tiangang, et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coatings[J]. Surface Technology, 2020, 49(10): 138 − 151,168.

    [15]

    Zhang Y, Chen Y K, Zhou J P, et al. Forming mechanism and mechanical property of pulsed laser welded Ti alloy and stainless steel joint using copper as interlayer[J]. Journal of Materials Research and Technology, 2020, 9(2): 1425 − 1433. doi: 10.1016/j.jmrt.2019.11.068

    [16]

    Tanprayoon D, Srisawadi S, Sato Y, et al. Microstructure and hardness response of novel 316L stainless steel composite with TiN addition fabricated by SLM[J]. Optics & Laser Technology, 2020, 129: 106238.

    [17]

    Gao Fuyang, Mu Zhuangzhuang, Ma Zhaowei, et al. Fine microstructure characterization of titanium alloy laser narrow gap welded joint[J]. China Welding, 2021, 30(3): 31 − 38.

    [18] 田志刚, 李新梅, 秦忠, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能[J]. 焊接学报, 2022, 43(12): 53 − 63.

    Tian Zhigang, Li Xinmei, Qin Zhong, et al. Microstructure and properties of laser cladding CoCrFeNiSix high entropy alloy coating[J]. Transactions of the China Welding Institution, 2022, 43(12): 53 − 63.

    [19]

    Sun Z, Ji X, Zhang W, et al. Microstructure evolution and high temperature resistance of Ti6Al4V/Inconel625 gradient coating fabricated by laser melting deposition[J]. Materials & Design, 2020, 191: 108644.

    [20] 张亚运, 魏金山, 齐彦昌, 等. TA2/Q235复合板用Ni基过渡层熔焊接头组织和性能[J]. 焊接学报, 2019, 40(1): 75 − 79.

    Zhang Yayun, Wei Jinshan, Qi Yanchang, et al. Microstructure and properties of welded joints with Ni base transition layer for TA2/Q235 composite plates[J]. Transactions of the China Welding Institution, 2019, 40(1): 75 − 79.

    [21]

    Wu W, Zhang M, Ding X, et al. Microstructure and mechanical property of fusion weld butt joints of TA1/X80 composite plate with TiNi and NiCrMo double-transition layers[J]. Chinese Journal of Materials Research, 2016, 30(5): 372 − 378.

  • 期刊类型引用(2)

    1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
    2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看

    其他类型引用(1)

图(10)  /  表(8)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  39
  • PDF下载量:  83
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-06-27
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回