高级检索

一种用于焊接结构多帧满秩成像检测的超声SH导波换能器

朱新杰, 李永涛, 邓明晰, 姚森

朱新杰, 李永涛, 邓明晰, 姚森. 一种用于焊接结构多帧满秩成像检测的超声SH导波换能器[J]. 焊接学报, 2023, 44(4): 84-92. DOI: 10.12073/j.hjxb.20220627001
引用本文: 朱新杰, 李永涛, 邓明晰, 姚森. 一种用于焊接结构多帧满秩成像检测的超声SH导波换能器[J]. 焊接学报, 2023, 44(4): 84-92. DOI: 10.12073/j.hjxb.20220627001
ZHU Xinjie, LI Yongtao, DENG Mingxi, YAO Sen. An ultrasonic SH-guided-wave transducer for image detection of welded structure with multi-frame and in full rank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 84-92. DOI: 10.12073/j.hjxb.20220627001
Citation: ZHU Xinjie, LI Yongtao, DENG Mingxi, YAO Sen. An ultrasonic SH-guided-wave transducer for image detection of welded structure with multi-frame and in full rank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 84-92. DOI: 10.12073/j.hjxb.20220627001

一种用于焊接结构多帧满秩成像检测的超声SH导波换能器

基金项目: 国家自然科学基金资助项目(12164001, 12074050);宁夏重点研发项目(引才专项)资助项目(2021BEB04006)
详细信息
    作者简介:

    朱新杰,博士,副教授;主要研究方向为超声成像、材料无损检测和评估等;Email: zhuxinjie.2008@tsinghua.org.cn

    通讯作者:

    邓明晰,博士,教授,博士研究生导师;Email: mxdeng@cqu.edu.cn

  • 中图分类号: TG 439.9

An ultrasonic SH-guided-wave transducer for image detection of welded structure with multi-frame and in full rank

  • 摘要: 超声水平剪切(shear horizontal, SH)导波换能器在对焊接板结构进行缺陷检测时具有重要的应用价值. 为了研制换能器以对焊接结构进行多帧满秩成像检测, 运用导波半波长理论对超声SH导波的激发和换能器内部多重散射回波进行了分析.根据多重散射理论推导了匹配层介质颗粒密度与衰减的关系, 确定匹配层的组分. 提出3种V型斜楔结构, 对平面型前楔结构换能器和非平面型前楔结构换能器内部的多重散射回波进行对比试验. 结果表明,正交前楔结构换能器内部二重以上散射回波幅值减小了45%以上. 对正交前楔结构换能器进行性能测试, 其所激发的SH导波对焊接结构板中尺寸当量为ϕ12 mm的缺陷回波信号信噪比达到了14.5 dB,具有较为优异的检测能力. 试验验证了理论分析的有效性, 所研制的正交前楔结构超声SH导波换能器可对焊接结构板中与波长尺寸当量的缺陷进行多帧满秩成像检测.
    Abstract: Ultrasonic transducer of shear horizontal (SH) guided wave has great application value in defect detection in welded structural plate. In order to develop the transducer that could perform multi-frame and full rank imaging detection of welded structures, the theory of half wavelength of guided waves was applied to analyze the excitation of ultrasonic SH-guided waves and the multiple-order scattering inside the transducer. According to the multiple-order scattering theory, the relationship between particle density and attenuation in the matching layer is derived, and the composition of the matching layer is determined. Both the multiple-order scattering echoes inside planar and non-planar front wedge transducers were analyzed experimentally. The research results indicate that the amplitude of the double or more scattered echoes inside the orthogonal front wedge structure has decreased by more than 45%. Performance testing was carried out on the orthogonal front wedge structure of transducer, and the SH-guided waves excited by it reached a signal-to-noise ratio of 14.5 dB for the defect echo signal when a size equivalent to ϕ12 mm in the welded structure was applied. This has demonstrated its superior detection capability. The effectiveness of the theoretical analysis has been verified through experiments. The SH-guided-wave transducer with orthogonal front wedge structure could be used to detect equivalent defects of different sizes in welded structural plates.
  • 加氢反应器是石油精制、改制、重质原油轻质化的核心设备. 窄间隙埋弧焊因其焊接热效率高、变形小、焊材消耗少等优势,被广泛应用于加氢反应器的筒体连接制造过程中. 随着加氢反应器的大型化,传统的单丝窄间隙埋弧焊难以满足制造效率需求,双丝埋弧焊由于焊接效率高而备受青睐[1-2]. 然而,双丝埋弧焊焊接热输入更大,易导致其强韧性和组织特性的恶化[3],威胁了加氢反应器的长周期高可靠运行. 因此,亟待揭示双丝埋弧焊接头强韧性定量演变规律及其机理. 文中以加氢反应器用钢2.25Cr-1Mo-0.25V为研究对象,研究其单丝和双丝窄间隙埋弧焊接头强韧性差异,并利用光镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)等方法开展微观组织分析,揭示其强韧性演变机制.

    以2.25Cr-1Mo-0. 25V钢为母材,焊材选用US-521H焊丝,其成分见表1表2[4].

    表  1  2.25Cr-1Mo-0. 25V的化学成分 (质量分数,%)
    Table  1.  Chemical elements and contents of 2.25Cr-1Mo-0. 25V
    CSPSiMnCrNi
    0.130.010.010.10.42.10.2
    MoCuVBNbTiCa
    1.00.20.30.0010.060.030.01
    下载: 导出CSV 
    | 显示表格
    表  2  US-521H的化学成分 (质量分数,%)
    Table  2.  Chemical elements and content of US-521H
    CSiMnPSCrMoVNb
    0.080.11.160.0040.0042.531.030.350.015
    下载: 导出CSV 
    | 显示表格

    采用双丝和单丝窄间隙埋弧焊焊接方式分别制备厚板焊接接头,均采用V形坡口,接头尺寸如图1所示. 两样品长度均为400 mm,宽度为380 mm,厚度为150 mm. 双丝窄间隙埋弧焊电源种类为后丝采用交流电源,前丝采用直流电源反接,单丝窄间隙埋弧焊采用交流电源. 当双丝焊接头正面焊接时,第一层焊道电流为420 ~ 550 A,其余焊道焊接电流为500 ~ 550 A,反面时为450 ~ 520 A;当单丝焊接头正面焊接时,焊接电流为420 ~ 550 A,反面时也为450 ~ 520 A;除电流以外,单丝与双丝其他焊接参数基本一致,电弧电压28 ~ 32 V,焊接速度不小于450 mm/min,预热温度不小于180 ℃,层间温度控制在180 ~ 250 ℃.

    图  1  焊接接头尺寸示意图(mm)
    Figure  1.  Dimension of the weld joint

    开展低温冲击试验,其取样位置如图2(a)所示. 沿厚度方向依次在热影响区和焊缝的上表面、T/4、T/2、3T/4位置垂直取样,其中T表示厚度,图2(b)为冲击试验尺寸,保证试样的缺口对应在具体关注的测试位置上. 当样品温度降到−20 ℃时,将试样迅速用夹子取出,放到夏比冲击试验机的载物台进行试验. 另外,在垂直于焊缝方向(Path1)路径进行显微硬度试验,如图2(c)所示,各测试点之间距离为1 mm,施加载荷为0.98 N,保载时间为15 s. 垂直于焊接方向取样,并进行拉伸试验,试样尺寸如图2(d)所示,拉伸速率为1 mm/min,使用MTS引伸计记录拉伸过程实时应变值. 上述每组试验均进行3次重复试验,结果取平均值.

    图  2  力学性能试验
    Figure  2.  Mechanical property experiment (mm). (a) impact test specimen sampling location; (b) impact test specimen size; (c) microhardness test path; (d) tensile specimen size

    使用OM,SEM和EBSD进行金相组织、断口形貌和晶粒类型等分析,金相试样需经过砂纸粗磨细磨、抛光、腐蚀等处理. 采用SU3800型扫描电子显微镜对低温冲击样品的断口微观形貌进行观测分析,设置电子加速电压15 kV,电流为151 μA;EBSD试样需使用氩离子抛光仪抛光,试验时以70°倾斜角对应探测器.

    图3为单、双丝窄间隙埋弧焊接头沿厚度方向的低温冲击吸收功特征分布. 可以看出,单丝和双丝窄间隙埋弧焊冲击吸收功沿着厚度方向上基本呈增加趋势,单、双丝窄间隙埋弧焊焊缝在上表面处冲击吸收功仅为7.1 J和3.6 J,在热影响区表面处分别为227.6 J和125.5 J,而在焊缝区T/4位置的冲击吸收功差别也极为显著,双丝较单丝降低了41.5%,焊缝处的冲击吸收功明显低于热影响区,最大差值达253.9 J.

    图  3  低温冲击韧性结果
    Figure  3.  Low temperature impact toughness results. (a) weld metal; (b) heat- affected zone

    图4所示,对焊缝T/4位置的冲击试样进行断口观测. 单丝窄间隙埋弧焊冲击试样断口微观形貌表现为准解理断裂,可明显看到解理台阶、河流花样和撕裂棱,解理台阶较窄,河流花样短而弯曲,支流少,周围很多撕裂棱,断口整体上凹凸不平. 双丝窄间隙埋弧焊试样断口微观形貌表现为解理断裂,存在大量较窄且不平整的解理台阶、解理扇形和河流花样. 双丝窄间隙埋弧焊断口的河流花样更长且弯曲程度更大,支流分布密集,每条支流都对应着不同高度且相互平行的解理面之间的台阶,导致更大的脆性断裂倾向,韧性较差.

    图  4  单丝和双丝窄间隙埋弧焊焊缝T/4位置冲击断口形貌
    Figure  4.  Microscopic morphology of impact fracture at T/4 position. (a) single-wire narrow gap submerged arc welds; (b) double-wire narrow gap submerged arc welds

    图5是单、双丝焊接接头沿横向路径Path1的显微硬度分布规律,可以发现,两类焊缝均表现为焊缝和热影响区的硬度值较高、母材区最低,整体硬度关于焊缝中心呈现出较为明显的对称分布趋势. 其中,单丝窄间隙埋弧焊接头母材(BM)、焊缝(WM)、热影响区(HAZ)处硬度的最大值分别达到了250 HV0.1,385 HV0.1和356 HV0.1;而双丝窄间隙埋弧焊接头母材、焊缝、热影响区的硬度最大值分别为286 HV0.1,340 HV0.1和368 HV0.1,单丝窄间隙埋弧焊接头的整体硬度大于双丝焊接接头. 双丝窄间隙埋弧焊热输入值高,会造成合金元素的氧化烧损增多,固溶强化作用减弱,是致使其硬度降低的重要原因之一[5].

    图  5  单丝和双丝窄间隙埋弧焊硬度分布规律
    Figure  5.  Hardness distribution of single and double-wire narrow gap submerged arc welding

    图6为单、双丝埋弧焊接头拉伸曲线. 从图中可以看出单丝窄间隙埋弧焊的拉伸性能整体上要优于双丝窄间隙埋弧焊,并且二者都没有表现出明显的屈服平台. 单丝窄间隙埋弧焊抗拉强度和屈服强度均大于双丝窄间隙埋弧焊(表3),单、双丝窄间隙埋弧焊屈服强度分别为659 MPa和642 MPa;单、双丝窄间隙埋弧焊抗拉强度分别为974 MPa和821 MPa,双丝接头抗拉强度、屈服强度较单丝接头分别降低15.7%和2.6%. 双丝窄间隙埋弧焊接头在拉伸强度方面同样呈现出相对较差的特征.

    图  6  单丝和双丝埋弧焊接头拉伸曲线
    Figure  6.  Tensile curves of single and double-wire submerged arc welding
    表  3  单丝和双丝埋弧焊屈服强度和抗拉强度对比
    Table  3.  Comparison of yield strength and tensile strength of single and double-wire submerged arc welding
    焊接样品 屈服强度
    ReL /MPa
    抗拉强度
    Rm/MPa
    单丝埋弧焊 659 974
    双丝埋弧焊 642 821
    下载: 导出CSV 
    | 显示表格

    图7为单丝和双丝窄间隙埋弧焊接头的热影响区及焊缝金相组织形貌. 可以看出,接头焊缝区域的主要组织为粒状贝氏体和板条状贝氏体,其晶粒尺寸小于母材和热影响区的晶粒. 双丝焊接头的晶粒尺寸高于单丝焊接头,这是由于在两根焊丝共同作用下,焊接热输入增大且更为集中,促进了初始奥氏体晶粒迅速长大,减少了晶界数量,对位错运动的限制作用减弱,削弱了细晶强化作用[6],材料抗变形和抗断裂能力降低,从而导致强度、硬度下降. 同时,冷却后得到了晶粒尺寸粗大的过热组织,形成许多平行的铁素体针片,并产生脆弱面,导致双丝窄间隙埋弧焊接头的低温冲击韧性低于单丝埋弧焊接头[7].

    图  7  焊缝与热影响区金相组织形貌
    Figure  7.  Metallographic structure of WM and HAZ. (a) single-wire narrow gap submerged arc welds; (b) double-wire narrow gap submerged arc welds

    对焊缝T/4位置进行深入观测. 如图8所示,双丝、单丝接头主要组织为贝氏体. 图8(a)中看出单丝焊接头中含有部分柱状晶,由于该接头冷却速度相对较快,焊缝金属从熔合线到焊缝中心方向易在凝固过程中形成成分过冷现象,所以在垂直于焊缝熔合线方向更易产生柱状晶;图8(b)的主要组织是粒状贝氏体(GB),含少量粒状铁素体(GF);图8(c)中双丝焊接头组织也主要为粒状贝氏体、块状铁素体和少量奥氏体,因其热输入较大得到足够的生长,其柱状晶较单丝窄间隙埋弧焊更为粗大. 图8(d)为图8(c)的局域放大,在铁素体晶界处能观察到细小微观裂纹,这些裂纹沿铁素体晶界扩张,细微裂纹的产生是由于双丝窄间隙埋弧焊奥氏体化的熔融金属冷却速度缓慢,在亚温区有较长时间的停留,使得奥氏体晶界析出一部分的铁素体,未熔合的铁素体呈现块状,其抵抗裂纹扩展能力较差,这些微小裂纹会在焊缝中快速扩展,裂纹存在会降低焊缝的冲击韧性,促使焊缝处材料发生脆性断裂,因此为了提高焊缝处低温冲击韧性,应合理控制热输入[8]. 此外,图8(d)中可观察到少量的M-A组元,在变形过程中M-A组元与贝氏体基体之间的变形协调能力差,容易在其基体之间的界面上产生微裂纹,削弱了材料的塑性变形能力[9].

    图  8  T/4位置金相组织
    Figure  8.  Microstructure in T/4 position. (a) single-wire narrow gap submerged arc welds under low magnification; (b) single-wire narrow gap submerged arc welds under high magnification; (c) double-wire welding joint under low magnification; (d) double-wire welding joint under high magnification

    采用EBSD对微观结构进行定量深入分析,图9为单丝和双丝窄间隙埋弧焊晶粒类型. 发现单、双丝窄间隙埋弧焊的平均晶粒尺寸分别为4.20 μm和5.03 μm. 根据晶粒内部平均取向差角度,可将晶粒分为亚结构晶粒、变形晶粒、再结晶晶粒三种类型[10]. 两类接头中变形晶粒数量远多于亚结构晶粒和再结晶晶粒. 由图10可知,其中单丝窄间隙埋弧焊变形晶粒含量达79.89%,双丝窄间隙埋弧焊变形晶粒高达85.93%. 而单、双丝窄间隙埋弧焊的亚结构晶粒、再结晶晶粒含量分别为10.70%,9.41%和6.99%,7.08%,这是由于窄间隙埋弧焊相比于其他焊接方式热输入低,晶粒无法充分进行再结晶行为,当条件不足以消除位错时,会重新排列成低能构型,位错的这种重排导致在微观结构中形成亚晶粒,因此再结晶晶粒含量少. 对比单丝和双丝窄间隙埋弧焊晶粒类型,由于双丝窄间隙埋弧焊过程热输入量大,焊缝区域与周围区域之间的温度梯度大,其变形程度高于单丝,变形晶粒更多,也意味着在焊接过程中经历了更多的塑性变形和位错累积,易导致材料内部积累更多的细微缺陷,从而降低材料的冲击韧性. 单丝窄间隙埋弧焊中亚结构和再结晶晶粒含量高,说明晶粒内部的细微结构更为均匀和紧密,减少了内部缺陷和空隙;且由于晶粒尺寸的降低,晶界数量增加,导致晶界阻碍增加,从而限制了位错运动和滑移,增强了材料的塑性变形阻力,产生了细晶强化作用,提高了材料的强度和硬度.

    图  9  单丝和双丝窄间隙埋弧焊不同晶粒类型分布
    Figure  9.  Distribution of different grain types in single and double-wire narrow gap submerged arc welding. (a) single-wire narrow gap submerged arc welding; (b) double-wire narrow gap submerged arc welding
    图  10  不同类型晶粒含量
    Figure  10.  Statistical diagrams of different types of grain

    图11为单、双丝窄间隙埋弧焊接头焊缝T/4位置处局域取向差分布. 由图11(a)和图11(b)看出,单丝窄间隙埋弧焊的平均局域取向差为1.38°,双丝埋弧的平均局域取向差为1.64°. 说明双丝窄间隙埋弧焊接头比单丝变形程度更高[11],导致其内部会产生较大的位错密度,形成大量的位错缠结和位错胞结构,导致局部应力集中并增加裂纹萌生的可能性,在一定条件下使材料更容易断裂,造成强度下降. 单丝接头组织具有更好的晶体取向一致性,这使得晶粒在变形过程中能够更好地协调变形;同时其较低的局域取向差意味着其内部的应力集中和缺陷更少,材料的均匀性和致密性更强,使得材料在受到外力冲击时能够更好地抵抗破坏,从而提高冲击韧性.

    图  11  局域取向差分布
    Figure  11.  Local misorientation distribution. (a) single-wire narrow-gap submerged arc welding; (b) double-wire narrow-gap submerged arc welding

    综合微观组织特征的试验分析结果,由于更为集中的焊接热输入,双丝窄间隙埋弧焊接头内出现晶粒尺寸粗大的过热组织,产生的变形晶粒含量更高、局部取向差更大,累积了更多的塑性变形和位错,引发材料内部微小缺陷,从而使其冲击韧性、强度、硬度等强韧性下降. 因此,需要通过合适的焊后热处理工艺恢复焊接接头的力学性能.

    (1)单丝窄间隙埋弧焊和双丝窄间隙埋弧焊焊缝处主要微观组织为粒状贝氏体、针状铁素体,双丝埋弧焊接头中含少量奥氏体、M-A组元且产生了更大的柱状晶,削弱了细晶强化作用,晶粒变形的不均匀程度增加,材料抗变形和抗断裂能力减弱,导致其抗拉强度和屈服强度较单丝接头分别降低15.7%和2.6%.

    (2)双丝埋弧焊接头中产生了大量平行的铁素体,并形成脆弱面,且含有大量变形晶粒和较大局域取向差,易出现应力集中现象,在受到外力冲击时难以有效地抵抗破坏. 因此,单丝窄间隙埋弧焊的冲击韧性优于双丝窄间隙埋弧焊,单丝窄间隙埋弧焊断裂形式为准解理断裂,断口中存在河流花样、解理平台、撕裂棱等微观形貌;双丝为解理断裂,断口中存在解理平台的微观形貌.

  • 图  1   SH波板中传播示意图

    Figure  1.   Schematic diagram of the propagation of SH waves in the plate

    图  2   超声导波换能器和导波在板中的传播示意图

    Figure  2.   Schematic diagram of ultrasonic guided wave transducer and propagation of guided waves in the plate

    图  3   SH导波换能器基本结构示意图

    Figure  3.   Basic structure diagram of SH guided wave transducer

    图  4   平面型前楔结构换能器内部多重散射回波

    Figure  4.   Multiple scattering echo inside the planar front-wedge transducer

    图  5   平面型前楔结构换能器内部散射回波信号

    Figure  5.   Internal scattered echo signal of planar front wedge transducer. (a) before matching the transducer with the backing; (b) after matching the transducer with the backing

    图  6   换能器前楔面锯齿槽结构

    Figure  6.   Sawtooth groove structure on the front wedge surface of the transducer

    图  7   无匹配层时不同前楔结构换能器内部散射回波信号

    Figure  7.   Internal scattered echo signals of transducers with different front wedge structures without matching layer. (a) transverse groove front wedge structure transducer matched with backing front; (b) vertical groove front wedge structure transducer matched with backing front; (c) orthogonal front wedge structure transducer matched with backing front

    图  8   横槽前楔结构换能器内部散射回波信号

    Figure  8.   Scattered echo signal inside the transducer after matching the front wedge structure of the transverse groove with the backing

    图  9   竖槽前楔结构换能器内部散射回波信号

    Figure  9.   Scattered echo signal inside the transducer after matching the vertical groove front wedge structure with the backing

    图  10   研制的超声导波换能器

    Figure  10.   Ultrasonic guided wave transducer

    图  11   正交前楔面换能器内部散射回波信号

    Figure  11.   Scattered echo signal inside the transducer after matching the orthogonal front wedge structure with the backing

    图  12   用于验证换能器检测能力的钢板试样(mm)

    Figure  12.   Steel plate sample used to verify the detection capability of the transducer

    图  13   超声SH导波换能器激发导波信号的频谱

    Figure  13.   Spectrum of guided wave signal excited by ultrasonic SH guided wave transducer

    图  14   正交前楔面SH导波换能器对钢板内缺陷检测信号

    Figure  14.   Detection signal of defects in steel plate by orthogonal front wedge surface SH guided wave transducer

    图  15   多帧满秩图像

    Figure  15.   Image of multi-frames imaging testing of full rank

  • [1]

    Fei Y, Royer R L, Rose J L. Ultrasonic guided wave imaging techniques in structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 2009, 21(3): 377 − 384.

    [2]

    Xu C B, Yang Z B, Zhai Z, et al. A weighted sparse reconstruction-based ultrasonic guided wave anomaly imaging method for composite laminates[J]. Composite Structures, 2019, 209: 233 − 241. doi: 10.1016/j.compstruct.2018.10.097

    [3]

    Wan X, Liu M, Zhang X, et al. Excitation and propagation of longitudinal L (0, 2) mode ultrasonic guided waves for the detection of damages in hexagonal pipes: numerical and experimental studies[J]. Shock and Vibration, 2021, 2021: 1 − 18.

    [4]

    Ahmad M. Diffraction of SH waves by a plane crack in a thick plate[C]//2007 Congres of Pakistan Academy of Sciences. Islamabad, Pakistan, 2007, 44(1): 27 − 38.

    [5]

    Alonso J, Pavon S, Vidal J, et al. A new insight on phased array ultrasound inspection in MIG/MAG welding[J]. Materials, 2022, 15(8): 1 − 12.

    [6] 朱新杰, 韩赞东, 都东, 等. 边界散射对超声水平剪切导波成像检测的影响[J]. 机械工程学报, 2011, 47(16): 14 − 19. doi: 10.3901/JME.2011.16.014

    Zhu Xinjie, Han Zandong, Du Dong, et al. Influence of boundary scattering on imaging and inspection of ultrasonic shear horizontal-guided waves[J]. Journal of Mechanical Engineering, 2011, 47(16): 14 − 19. doi: 10.3901/JME.2011.16.014

    [7]

    Yan Z, Wei C, Zhang C. Elastic SH wave propagation in periodic layered composites with a periodic array of interface cracks[J]. Journal of Applied Mechanics, 2015, 28(5): 453 − 463.

    [8] 刘文才, 樊建春, 杨进. 采用超声导波的储罐罐顶腐蚀深度检测方法[J]. 光学精密工程, 2021, 29(6): 1468 − 1481. doi: 10.37188/OPE.20212906.1468

    Liu Wencai, Fan Jianchun, Yang Jin. Corrosion depth detection of tank top based on ultrasonic guided waves[J]. Optical Precision Engineering, 2021, 29(6): 1468 − 1481. doi: 10.37188/OPE.20212906.1468

    [9] 卫小龙, 杜国锋, 袁洪强, 等. 超声导波在焊缝缺陷检测中的发展与挑战[J]. 科学技术与工程, 2020, 20(31): 12683 − 12690. doi: 10.3969/j.issn.1671-1815.2020.31.002

    Wei Xiaolong, Du Guofeng, Yuan Hongqiang, et al. Development and challenge of ultrasonic guided wave in weld defect detection[J]. Science technology and Engineering, 2020, 20(31): 12683 − 12690. doi: 10.3969/j.issn.1671-1815.2020.31.002

    [10]

    Zhang L, Yang Y, Wei X, et al. The study of non-detection zones in conventional long-distance ultrasonic guided wave inspection on square steel bars[J]. Applied Sciences, 2018, 129(8): 1 − 24.

    [11]

    Su Z, Yang C, Pan N, et al. Assessment of delamination in composite beams using shear horizontal (SH) wave mode[J]. Composites Science and Technology, 2007, 67(2): 244 − 251. doi: 10.1016/j.compscitech.2006.08.019

    [12]

    Nguyen L T,Saenger E H. Guided ultrasonic wavefield cross-correlation with a curved array for high-resolution plate inspection[J]. Journal of Geophysics and Engineering, 2020, 17(3): 451 − 462. doi: 10.1093/jge/gxaa004

    [13] 杜晗, 许桢英. 超声导波焊缝检测中阵列式传感器的信号融合方式研究[J]. 电子科技, 2020, 33(7): 32 − 36.

    Du Han, Xu Zhenying. The research of ultrasonic wave signal fusion on array sensors in weld detection[J]. Electronic Technology, 2020, 33(7): 32 − 36.

    [14]

    Huan Q, Chen M, Li F. A high-sensitivity and long-distance structural health monitoring system based on bidirectional SH wave phased array[J]. Ultrasonics, 2020, 108: 1 − 10.

    [15]

    Ranjbar Naserabadi M J, Sodagar S. Application of phased array ultrasonic transducers for guided wave scanning of plates using multi-point focusing technique[J]. Journal of Nondestructive Evaluation, 2022, 41(2): 38 − 45. doi: 10.1007/s10921-022-00867-0

    [16] 杨敬, 吴斌, 焦敬品, 等. 奥氏体不锈钢焊缝超声阵列检测方法[J]. 焊接学报, 2022, 43(2): 1 − 10.

    Yang Jing, Wu Bin, Jiao Jingpin, et al. Nondestructive testing of austenitic welds using method of ultrasonic array[J]. Transactions of the China Welding Institution, 2022, 43(2): 1 − 10.

    [17]

    Hall J S, Michaels J E. Multipath ultrasonic guided wave imaging in complex structures[J]. Structural Health Monitoring, 2015, 14(4): 345 − 358. doi: 10.1177/1475921715578316

    [18] 洪红, 许桢英, 刘欢, 等. 一种用于焊缝检测的压电式特征导波传感器[J]. 仪表技术与传感器, 2016(3): 10 − 13. doi: 10.3969/j.issn.1002-1841.2016.03.004

    Hong Hong, Xu Zhenying, Liu Huan, et al. Piezoelectric sensor based on feature-guided wave for weld NDT[J]. Instrument Technology and Sensors, 2016(3): 10 − 13. doi: 10.3969/j.issn.1002-1841.2016.03.004

    [19] 朱新杰, 陈以方, 韩赞东, 等. 一种用于焊接结构超声成像检测的SH导波换能器[J]. 焊接学报, 2013, 34(2): 17 − 21,114.

    Zhu Xinjie, Chen Yifang, Han Zandong, et al. An ultrasonic SH-guided-wave transducer for ultrasonic imaging and testing of plate with welded structure[J]. Transactions of the China Welding Institution, 2013, 34(2): 17 − 21,114.

    [20] 朱新杰, 邓明晰, 蔡淑娟, 等. 板中超声导波弧形合成孔径阵列多帧满秩成像检测[J]. 机械工程学报, 2020, 56(24): 24 − 30.

    Zhu Xinjie, Deng Mingxi, Cai Shujuan, et al. Multi-frames imaging detection of full rank for arc synthetic aperture array of ultrasonic guided waves in plates[J]. Journal of Mechanical Engineering, 2020, 56(24): 24 − 30.

    [21]

    Li Y Q, Zhao P, Qu Z Y, et al. Weld defect detection using high frequency SH guided wave transducers based on magnetostrictive mechanism [C]//2017 IEEE Far East NDT New Technology & Application Forum (IEEE FENDT 2017). Xi'an, China, 2017: 26 − 30.

    [22]

    Waterman P C, Truell Rohn. Multiple scattering of wavesⅡ[J]. Journal of Mathematical Physics, 1961, 2(4): 512 − 537. doi: 10.1063/1.1703737

    [23] 王耀俊, 袁忆丰. 超声换能器背衬材料的声学性能[J]. 无损检测, 1989, 11(8): 221 − 223.

    Wang Yaojun, Yuan Yifeng. Acoustic properties of backing material of ultrasonic transducer[J]. Nondestructive Testing, 1989, 11(8): 221 − 223.

    [24] 张剑. 超声换能器匹配层与背衬材料对性能影响的研究[D]. 长春: 长春理工大学, 2021.

    Zhang Jian. Study on the influence of matching layer and backing material on performance of ultrasonic transducer[D]. Chang Chun: Changchun University of Science and Technology, 2021.

    [25]

    Lin G, Li Z Y, Li J B. Wave scattering and diffraction of subsurface cavities in layered half-space for incident SV-P and SH waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(2): 239 − 260. doi: 10.1002/nag.3013

图(15)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  38
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回