高级检索

复杂空间曲面焊接机器人自动编程系统

姚宇, 张秋菊, 陈宵燕, 吕青, 焦露

姚宇, 张秋菊, 陈宵燕, 吕青, 焦露. 复杂空间曲面焊接机器人自动编程系统[J]. 焊接学报, 2023, 44(5): 122-128. DOI: 10.12073/j.hjxb.20220623003
引用本文: 姚宇, 张秋菊, 陈宵燕, 吕青, 焦露. 复杂空间曲面焊接机器人自动编程系统[J]. 焊接学报, 2023, 44(5): 122-128. DOI: 10.12073/j.hjxb.20220623003
YAO Yu, ZHANG Qiuju, CHEN Xiaoyan, LV Qing, JIAO Lu. Automatic programming system of complex space trajectory welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 122-128. DOI: 10.12073/j.hjxb.20220623003
Citation: YAO Yu, ZHANG Qiuju, CHEN Xiaoyan, LV Qing, JIAO Lu. Automatic programming system of complex space trajectory welding robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 122-128. DOI: 10.12073/j.hjxb.20220623003

复杂空间曲面焊接机器人自动编程系统

详细信息
    作者简介:

    姚宇,硕士研究生;主要从事焊接机器人智能控制技术以及焊接机器人自动编程方面研究;Email: 6200810113@stu.jiangnan.edu.cn

    通讯作者:

    张秋菊,博士,教授,博士研究生导师;Email: qjzhang@jiangnan.edu.cn

  • 中图分类号: TG 409

Automatic programming system of complex space trajectory welding robot

  • 摘要: 针对机器人在空间曲面焊接过程中需要保持焊接速度和焊炬位姿恒定的工艺要求,提出了一种适用于复杂空间曲面焊接机器人的运动规划方法,该方法采用NURBS曲线对三维点云描述的空间轨迹进行光顺逼近,建立机器人配合变位机组成的多自由度焊接系统运动学模型并进行逆运动学求解. 开发了一套完整的复杂空间曲面焊接机器人自动编程系统. 以翻领成型器为例进行了复杂空间曲面焊接机器人的自动编程及焊接试验. 结果表明,文中提出的复杂空间曲面焊接机器人运动规划方法和自动编程系统能够顺利完成焊接任务,且运动平稳,具有良好的焊接轨迹精度.
    Abstract: The automatic programming of complex space curved surface welding robots is fundamental to achieving high-frequency, high-precision automatic welding. To maintain constant welding speed and torch pose during space surface welding, a motion planning method suitable for complex space surface welding robots was proposed. NURBS curves were used to smooth and approximate the space trajectory described by three-dimensional point clouds. The kinematic model of a multi-degree-of-freedom welding system was established, and inverse kinematics were solved. Finally, a complete automatic programming system for complex spatial curved welding robots was developed based on the above research. A lapel shaper was used as an example to perform automatic programming and welding experiments with a complex space curved surface welding robot. The results show that the proposed motion planning method and automatic programming system for complex space curved surface welding robots can successfully complete welding tasks with stable motion and good welding trajectory accuracy.
  • 图  1   复杂空间曲面焊接机器人运动机构示意图

    Figure  1.   Motion mechanism of complex space curved surface welding robot direction

    图  2   焊接机器人坐标系建立情况示意图

    Figure  2.   Establishment of welding robot coordinate system direction

    图  3   焊炬姿态求解示意图

    Figure  3.   Welding torch attitude solution direction

    图  4   焊接机器人自动编程系统

    Figure  4.   Automatic programming system for welding robot. (a) Automatic programming system architecture; (b) Automatic programming flowchart

    图  5   PLY文件数据

    Figure  5.   PLY file data

    图  6   焊接机器人离线编程系统软件界面

    Figure  6.   Software interface of welding robot offline programming system

    图  7   复杂空间曲面焊接机器人系统实物图

    Figure  7.   Physical drawing of complex space curved surface welding robot system

    图  8   待焊翻领成型器样件

    Figure  8.   Lapel shaper sample to be welded

    图  9   无NURBS光顺自动编程焊接试验系统参数

    Figure  9.   No NURBS smoothing automatic programming welding experimental system parameters. (a) graph of joint angle with time; (b) graph of joint current with time; (c) actual error at the end of the welding torch

    图  10   NURBS光顺自动编程焊接试验系统参数

    Figure  10.   NURBS smoothing automatic programming welding experimental system parameters. (a) graph of joint current with time; (b) actual error at the end of the welding torch

  • [1] 杨建华, 张定华, 吴宝海. 考虑加工过程的复杂薄壁件加工综合误差补偿方法[J]. 航空学报, 2014, 35(11): 3174 − 3181. doi: 10.7527/S1000-6893.2014.0019

    Yang Jianhua, Zhang Dinghua, Wu Baohai. A comprehensive error compensation approach considering machining process for complex thinwall parts machining[J]. Acta Aeronautica Et Astronautica Sinica, 2014, 35(11): 3174 − 3181. doi: 10.7527/S1000-6893.2014.0019

    [2]

    Feng J, Zhang H, Peng H. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J]. Materials & Design, 2009, 30(5): 1850 − 1852.

    [3] 郭吉昌, 朱志明, 王鑫, 等. 全位置焊接机器人逆运动学数值求解及轨迹规划方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 292 − 297.

    Guo Jichang, Zhu Zhiming, Wang xin, et al. Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 292 − 297.

    [4] 曾锦乐, 都东, 常保华, 等. 复杂空间轨迹焊接过程运动规划方法[J]. 清华大学学报(自然科学版), 2016, 56(10): 1031 − 1036. doi: 10.16511/j.cnki.qhdxxb.2016.22.034

    Zeng Jinle, Du Dong, Chang Baohua, et al. Motion planning method for complex three dimensional path welding[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1031 − 1036. doi: 10.16511/j.cnki.qhdxxb.2016.22.034

    [5] 马凯威, 韩良, 孙小肖, 等. 基于曲率优化的机器人砂带磨削轨迹规划[J]. 机器人, 2018, 40(3): 360 − 367. doi: 10.13973/j.cnki.robot.170408

    Ma Kaiwei, Han Liang, Sun Xiaoxiao, et al. Trajectory planning for robotic belt grinding based on curvature optimization[J]. Robot, 2018, 40(3): 360 − 367. doi: 10.13973/j.cnki.robot.170408

    [6]

    Yang L, Liu Y H, Peng J Z. Advances techniques of the structured light sensing in intelligent welding robots: a review[J]. Advanced Manufacturing Technology, 2020, 110: 1027 − 1046.

    [7] 孙瑜, 郑祖杰, 圣冬冬, 等. 航天大型复杂结构件数控加工编程技术发展现状与趋势[J]. 工具技术, 2021, 55(6): 13 − 17. doi: 10.3969/j.issn.1000-7008.2021.06.002

    Sun Yu, Zheng Zujie, Sheng Dongdong, et al. Development status and trend of NC machining programming technology for aerospace large-scale complex structural parts[J]. Tool Engineering, 2021, 55(6): 13 − 17. doi: 10.3969/j.issn.1000-7008.2021.06.002

    [8]

    Wang B, Hu S J, Sun L, et al. Intelligent welding system technologies: state-of-the-art review and perspectives[J]. Journal of Manufacturing Systems, 2020, 56: 373 − 391. doi: 10.1016/j.jmsy.2020.06.020

    [9]

    Shi L, Tian X. Automation of main pipe-rotating welding scheme for intersecting pipes[J]. Advanced Manufacturing Technology, 2015, 77(5-8): 955 − 964. doi: 10.1007/s00170-014-6526-8

    [10]

    Shi L, Tian X, Zhang C. Automatic programming for industrial robot to weld intersecting pipes[J]. Advanced Manufacturing Technology, 2015, 81(9-12): 2099 − 2107. doi: 10.1007/s00170-015-7331-8

    [11]

    Bedaka A K, Lin C Y. CAD-based offline programming platform for welding applications using 6-DOF and 2-DOF robots[C]//2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2020.

    [12]

    Shen W, Hu T, Zhang C, et al. A welding task data model for intelligent process planning of robotic welding[J]. Robotics and Computer-Integrated Manufacturing, 2020, 64: 101934. doi: 10.1016/j.rcim.2020.101934

    [13]

    Zheng C, An Y, Wang Z, et al. Hybrid offline programming method for robotic welding systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102238. doi: 10.1016/j.rcim.2021.102238

    [14]

    Ribeiro J, Rui L, Eckhardt T, et al. Robotic process automation and artificial intelligence in industry 4.0 – a literature review[J]. Procedia Computer Science, 2021, 181(1): 51 − 58.

    [15] 方建文, 晁永生, 袁逸萍. 改进B样条插值法的焊接机器人关节轨迹优化[J]. 机械设计与制造, 2021, 368(10): 1 − 4,10. doi: 10.3969/j.issn.1001-3997.2021.10.001

    Fang Jianwen, Chao Yongsheng, Yuan Yiping. Research on the trajectory optimization of welding robot based on improved B-Spline interpolation method[J]. Machinery Design & Manufacture, 2021, 368(10): 1 − 4,10. doi: 10.3969/j.issn.1001-3997.2021.10.001

    [16]

    Hashemian A, Hosseini S F. An integrated fitting and fairing approach for object reconstruction using smooth NURBS curves and surfaces[J]. Computers & Mathematics with Applications, 2018, 76(3): 1555 − 1575.

    [17] 兰浩, 李德信. NURBS曲线整体光顺逼近算法研究[J]. 计算机应用, 2018, 76(3): 1555 − 1575.

    Lan Hao, Li Dexin. Research of whole fairing and approximation algorithm of NURBS curve[J]. Journal of Computer Applications, 2018, 76(3): 1555 − 1575.

    [18] 王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125

    Wang Tianqi, Li Tianxu, Li Liangyu, et al. Off-line programming technology for arc additive manufacturing of thin-walled components with complex structures[J]. Transactions of the china welding institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125

    [19] 杨永亮, 周一届. 无背平面式翻领成型器研究与应用[J]. 机械设计, 2015, 32(6): 79 − 82. doi: 10.13841/j.cnki.jxsj.2015.06.017

    Yang Yongliang, Zhou Yijie. Study and application of shoulder former without back plane[J]. Journal of Machine Design, 2015, 32(6): 79 − 82. doi: 10.13841/j.cnki.jxsj.2015.06.017

    [20] 罗孟军. 翻领制袋成型器制袋过程分析[D]. 无锡: 江南大学, 2014.

    Luo Mengjun. Analysis about Bag-making process of the forming shoulder[D]. Wuxi: Jiangnan University, 2014.

  • 期刊类型引用(5)

    1. 樊景博,田祎,任鑫博. 基于计算机视觉技术的焊接机器人定位精度分析. 微型电脑应用. 2021(02): 15-17 . 百度学术
    2. 肖文波,何银水,袁海涛,马国红. 镀锌钢GMAW焊缝成形特征与焊枪方向同步实时检测. 焊接学报. 2021(12): 78-82+101 . 本站查看
    3. 陈继传. 工艺改进型料槽机器人焊接工作站. 科技风. 2020(11): 172 . 百度学术
    4. 洪磊,杨小兰,王保升,吕东升. 基于球面均匀分布的焊接机器人TCP标定方法. 焊接学报. 2020(08): 14-21+98 . 本站查看
    5. 杨秀芝,张锐,王兴东,蒋宇辉,王子涵. 基于PSD的薄板焊接坡口信号识别系统. 焊接. 2020(10): 28-33+62-63 . 百度学术

    其他类型引用(3)

图(10)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  49
  • PDF下载量:  113
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-06-22
  • 网络出版日期:  2023-03-29
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回