Effect of SiC adiition on microstructure and mechanical properties of the W/AgCuTi/Cu brazed joint
-
摘要: 为研究碳化硅(SiC)添加对缓解钨-铜钎焊接头残余应力的作用效果及机理,采用真空钎焊技术获得不同碳化硅含量(质量分数为0 ~ 20%)的W/SiC-AgCuTi/Cu钎焊接头,分析焊接接头组织演变及剪切性能变化规律. 结果表明,随着SiC含量的增加,钎焊接头剪切强度先提升后降低. 当SiC的质量分数为10%时,钎焊接头的剪切强度达到峰值120 MPa,比未添加SiC的焊接接头强度提升45%左右. 分析认为,少量(质量分数为0 ~ 10%)的SiC硅在W-Cu焊缝组织中较均匀分布,可有效缓解母材热失配带来的焊接残余应力,提升焊接接头强度. 但过量(质量分数为20%)的SiC易在焊缝组织中聚集成大尺寸块体,剪切过程中形成应力集中,不利于焊接接头强度进一步提升.Abstract: To study the effect and mechanism of SiC addition on relieving residual stress in tungsten-copper brazed joints, several W/SiC-AgCuTi/Cu brazed joints with different SiC contents were obtained using vacuum brazing technology. The microstructure evolution and shearing properties of the joints were analyzed. The results show that the shear strength of the brazed joint initially increases and then decreases with increasing SiC addition. When the addition of SiC increases to 10%, the shear strength of the brazed joint reaches 120 MPa, 45% higher than that of the welded joint without SiC. It was proposed that a small amount of SiC (0 − 10%) can be uniformly distributed in the W-Cu brazed joint, effectively relieving welding residual stress and improving joint strength. However, excess SiC (20%) tends to aggregate into large blocks in the joint, resulting in stress concentration during shearing, which counteracts strengthening of the W-Cu brazed joint.
-
Keywords:
- tungsten-copper /
- brazing /
- residual stress /
- silicon carbide /
- strength
-
-
表 1 掺杂ω = 20% 的SiC的W/SiC-AgCuTi/Cu钎焊接头断口EDS点分析结果(质量分数,%)
Table 1 Results of EDS point analysis of fractured W/SiC-AgCuTi/Cu brazed joints doped with 20% SiC
位置 Ag Cu Ti Si C W 点 1 4.81 2.17 4.62 40.53 46.66 1.20 点 2 65.51 20.45 1.81 5.10 0.01 7.11 点 3 2.86 76.17 8.15 0.81 0.00 12.01 点 4 6.09 83.51 8.82 1.37 0.21 0.00 -
[1] 徐宇欣, 邱小明, 阮野, 等. 钨基合金与钢异质材料连接研究进展[J]. 焊接学报, 2021, 42(10): 87 − 96,102. Xu Yuxin, Qiu Xiaoming, Ruan Ye, et al. Advances in the study of tungsten-based alloys for joining with steel heterogeneous materials[J]. Transactions of the China Welding Institution, 2021, 42(10): 87 − 96,102.
[2] 陈远亭, 李先芬, 陈柏炎. 钨的钎焊研究进展[J]. 有色金属材料与工程, 2018, 39(6): 32 − 36. Chen Yuanting, Li Xianfen, Chen Baiyan. Research progress of tungsten brazing[J]. Nonferrous Metal Materials and Engineering, 2018, 39(6): 32 − 36.
[3] 骆瑞雪, 李争显. 不同焊料对Cu/W钎焊接头强度的影响[J]. 热加工工艺, 2009, 38(9): 109 − 111. doi: 10.3969/j.issn.1001-3814.2009.09.035 Luo Ruixue, Li Zhengxian. Effect of different solders on the strength of Cu/W brazed joints[J]. Hot Working Technology, 2009, 38(9): 109 − 111. doi: 10.3969/j.issn.1001-3814.2009.09.035
[4] 邹贵生, 吴爱萍, 高守传, 等. Ag-Cu-Ti活性钎料真空钎焊钨、石墨与铜的研究[J]. 新技术新工艺, 2002(6): 40 − 42. doi: 10.3969/j.issn.1003-5311.2002.06.023 Zou Guisheng, Wu Aiping, Gao Shouchuan et al. Vacuum brazing of tungsten, graphite and copper with Ag-Cu-Ti active brazing material[J]. New Technology New Process, 2002(6): 40 − 42. doi: 10.3969/j.issn.1003-5311.2002.06.023
[5] 蔡颖军, 王刚, 赵禹, 等. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72 − 81. doi: 10.11868/j.issn.1001-4381.2020.000687 Cai Yingjun, Wang Gang, Zhao Yu, et al. Effects of AgCu/foam Cu/AgCu composite brazing materials on the organization and properties of brazed joints of ZrB2-SiC/Inconel 600 alloy[J]. Materials Engineering, 2021, 49(10): 72 − 81. doi: 10.11868/j.issn.1001-4381.2020.000687
[6] Wang G, Cai Y, Xu Q, et al. Microstructural and mechanical properties of inconel 600/ZrB2-SiC joints brazed with AgCu/Cu-foam/AgCu/Ti multi-layered composite filler[J]. Journal of Materials Research and Technology, 2020, 9(3): 3430 − 3437. doi: 10.1016/j.jmrt.2020.01.080
[7] Wang G, Cai Y, Wang W, et al. AgCuTi/graphene-reinforced Cu foam: A novel filler to braze ZrB2-SiC ceramic to Inconel 600 alloy[J]. Ceramics International, 2020, 46(1): 531 − 537. doi: 10.1016/j.ceramint.2019.08.293
[8] Jin L, Lin J, Wang H, et al. Carbon nanotubes-reinforced Ni foam interlayer for brazing SiO2-BN with Ti6A14V alloy using TiZrNiCu brazing alloy[J]. Ceramics International, 2018, 44(4): 3684 − 3691. doi: 10.1016/j.ceramint.2017.11.136
[9] Zhang L X, Zhang B, Sun Z, et al. Brazing of ZrB2–SiC–C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlayer[J]. Ceramics International, 2020, 46(8): 10224 − 10232. doi: 10.1016/j.ceramint.2020.01.014
[10] Zhang L X, Sun Z, Chang Q, et al. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler[J]. Ceramics International, 2019, 45(2): 1698 − 1709. doi: 10.1016/j.ceramint.2018.10.052
[11] Shang J, Yan J, Li N. Brazing W and Fe-Ni-Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers[J]. Journal of Alloys and Compounds, 2014, 611: 91 − 95. doi: 10.1016/j.jallcom.2014.05.106
[12] Song Y, Liu D, Song X, et al. In-situ synthesis of TiC nanoparticles during joining of SiC ceramic and GH99 superalloy[J]. Journal of the American Ceramic Society, 2019, 102(11): 6529 − 6541. doi: 10.1111/jace.16541
[13] Xue H, Ding Z, Guo W, et al. Effect of Mo addition on residual stress and mechanical properties of SiC ceramic/Nb521 alloy joints brazed by using AgCuTi filler[J]. Materials Letters, 2021, 310: 131500.
[14] Gan Shiming, Liu Huaying, Zhai Zhiping, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.
[15] Song X G, Cao J, Wang Y F, et al. Effect of Si3N4-particles addition in Ag–Cu–Ti filler alloy on Si3N4/TiAl brazed joint[J]. Materials Science & Engineering A, 2011, 528(15): 5135 − 5140.
-
期刊类型引用(1)
1. 李力,王一轩,罗芬,张文涛,赵巍,李小强. 钎焊时间对TiH_2-65Ni+TiB_2钎料钎焊连接TiAl合金接头的影响. 机械工程学报. 2024(08): 176-185 . 百度学术
其他类型引用(1)