高级检索

金属/CFRP异种材料连接技术的研究进展及界面结合机理分析

张婷婷, 朱凯航, 许振波, 王艳, 安栋财, 张体明

张婷婷, 朱凯航, 许振波, 王艳, 安栋财, 张体明. 金属/CFRP异种材料连接技术的研究进展及界面结合机理分析[J]. 焊接学报, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001
引用本文: 张婷婷, 朱凯航, 许振波, 王艳, 安栋财, 张体明. 金属/CFRP异种材料连接技术的研究进展及界面结合机理分析[J]. 焊接学报, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001
ZHANG Tingting, ZHU Kaihang, XU Zhenbo, WANG Yan, AN Dongcai, ZHANG Timing. Research progress and perspective on bonding technologies of metal/CFRP materials and its interfacial bonding mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001
Citation: ZHANG Tingting, ZHU Kaihang, XU Zhenbo, WANG Yan, AN Dongcai, ZHANG Timing. Research progress and perspective on bonding technologies of metal/CFRP materials and its interfacial bonding mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 44-54. DOI: 10.12073/j.hjxb.20220610001

金属/CFRP异种材料连接技术的研究进展及界面结合机理分析

基金项目: 国家自然科学基金资助项目(52275360,51805359);JKW基础加强重点项目子课题;江西省航空构件成形与连接重点实验室开放基金资助项目(EL202180258);山西浙大新材料与化工研究院研发资助项目(2022SX-TD021)
详细信息
    作者简介:

    张婷婷,博士,副研究员,硕士研究生导师;主要从事异质材料连接技术及接头性能的研究;Email: tyztt88@163.com

  • 中图分类号: TG 401

Research progress and perspective on bonding technologies of metal/CFRP materials and its interfacial bonding mechanism

  • 摘要: 碳纤维复合材料(CFRP)具有质轻高强、高模量和低膨胀优势,在“陆海空天”等领域应用潜力和需求极大. 其中热塑性碳纤维复合材料(CFRTP)近年来快速发展,CFRP和CFRTP与金属结构件的连接技术受到国内外学者和工业界的广泛关注. 文中综述了金属材料与CFRP连接的主要技术及界面的结合机理;对比分析了不同连接工艺的成形原理,总结了金属与CFRP连接界面的不同作用效果;结合发展现状及未来工程应用需求,对金属/CFRP高质量连接技术瓶颈的突破方向进行了展望.
    Abstract: Carbon fiber reinforced polymer (CFRP) has been applied in the fields of land, sea, air, and space due to advantages of light weight, high modulus, and low expansion. In recent years, with the development of carbon fiber reinforced thermoplastic plastics (CFRTP), bonding technologies for CFRPs and metals have gained extensive attention from domestic and foreign industry and scholars. This study summarizes the main technologies and bonding mechanisms of metal/CFRP. In addition, the forming principles of different bonding processes were analyzed, and contributing factors at the interface between metals and CFRPs were summarized. Furthermore, the technical breakthrough direction of high-quality metal/CFRP connections was explored based on development status and engineering application needs.
  • 核反应堆包层结构经受着极其恶劣的服役环境,要求其在长期服役过程中保持结构和冶金的完整性. 9Cr-1.5W-0.15Ta耐热钢具有较低的辐照肿胀系数和热膨胀系数、较高的热导率等优异的热物理性能和良好的力学性能,被认为是核聚变/裂变发堆包层结构的理想候选材料之一[1-4].

    为了减小热影响区宽度,保持接头良好的组织性能,多采用低热输入、高能量密度的特种焊接技术对9Cr-1.5W-0.15Ta耐热钢进行焊接[5-7]. 搅拌摩擦焊(Friction stir welding, FSW)是一种新型固态塑性连接技术,焊接热输入较低,可以保持焊缝性能与母材相近,焊接变形和残余应力较小等的特点[8-9]. 与搅拌摩擦焊相比,电子束焊(electron beam welding,EBW)是一种高效率、高能量密度的熔化焊接方法,具有焊接冶金质量好、焊接熔深大和焊接热影响区窄的特点,具有适用性强、操作简便等优势[10-11]. 因此,对比研究9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊缝和电子束焊缝组织和力学性能的差异具有重要意义.

    文中对9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的微观组织、硬度和冲击性能进行比较,分析微观组织与力学性能之间的关联性,并论述接头的断裂机制.

    试验采用的母材为9Cr-1.5W-0.15Ta耐热钢,其化学成分如表1所示. 母材热处理工艺如下:1000 ℃下正火保温60 min,水淬之后在700 ℃下回火60 min. 搅拌摩擦焊机为北京赛福斯特技术有限公司生产的FSW-3LM-020型设备,搅拌头的材料为W-25%Re合金. 焊接工艺参数为焊接速度60 mm/min,焊接转速300 r/min和焊接压力10 kN. 电子束焊机选择KL110型真空电子束焊机设备. 焊接加速电压60 kV,焊接电流30 mA,焊接速度600 mm/min,在全聚焦状态下以束流垂直于板面的方式进行焊接.

    沿垂直于焊接方向切取尺寸为25 mm × 10 mm的试样,经过粗磨、细磨和抛光后,在5 g FeCl3, 20 mL盐酸和100 mL蒸馏水的腐蚀液中侵蚀90 s制备金相试样. 采用光学显微镜(OLYMPUS GX51)和电子扫描显微镜(SEM,TDCLSU 1510)对接头区域的微观组织进行观察. 采用型号为Tecnai G2F30透射电子显微镜在300 kV加速电压下观测析出相.

    低温冲击试验试样尺寸如图1所示,冲击试验后,采用电子扫描显微镜观测冲击试样断口形貌. 硬度试验是在金相试样上焊缝区域测试,载荷为9.8 N,加载时间为15 s.

    表  1  9Cr-1.5W-0.15Ta耐热钢化学成分(质量分数,%)
    Table  1.  Chemical composition of the 9Cr-1.5W-0.15Ta heat resistant steel
    CCrMnVWTaSiZrNSPFe
    0.190.50.21.50.150.050.0050.0070.0020.002余量
    下载: 导出CSV 
    | 显示表格
    图  1  焊缝低温冲击试样取样位置和几何尺寸(mm)
    Figure  1.  Dimension and position of impact toughness testing sample in the weld

    9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝的微观组织如图2所示. 图2a, b是9Cr-1.5W-0.15Ta耐热钢母材的微观组织,由于经过正火、淬火和回火等热处理后,具有完全的回火的组织特征,晶粒尺寸大约为20 μm,并在原奥氏体晶界和晶内形成均匀分布的析出相(M23C6和MX). 电子束焊缝的微观组织如图2c, d所示,其特点为晶粒粗大,组织不均匀,且晶界处的M23C6析出相和晶内MX析出相均发生完全溶解. 虽然电子束焊能量密度较大,熔池中心温度高,但其高温停留时间短,焊后冷却速度较大,因此在熔合线形成较大的温度梯度,促进粗大的树枝状组织的形成. 从焊缝两边生长的晶粒在焊缝中心处相遇,形成了垂直于母材原始晶粒取向的组织结构.

    图2e, f为搅拌摩擦焊缝的微观组织. 在焊接过程中,焊缝由于受到搅拌针剧烈的搅拌而引起严重的塑性变形和摩擦,产生的局部高温作用使得组织发生动态再结晶,加之焊后冷却速率较大,发生马氏体转变[12]. 因此,搅拌摩擦焊缝的组织由回火组织转变为板条马氏体. 焊缝区域晶粒发生明显细化,这是由于该区域受到搅拌针的机械作用,动态再结晶的晶粒发生破碎而细化. 此外,在搅拌摩擦焊缝中晶界上的M23C6析出相发生完全溶解,而晶内依然存在球状MX析出相,这表明焊缝区域经历的焊接热循环峰值温度高于M23C6相的熔点(860 ℃)、但低于MX相熔点(1310 ℃)[13-14].

    图  2  母材、电子束焊缝和搅拌摩擦焊缝的微观组织特征
    Figure  2.  Microstructure of base metal, EBW weld and FSW weld. (a) metallographic of base metal; (b) SEM microstructure of base metal; (c) metallographic of EBW weld; (d) SEM microstructure of EBW weld; (e) metallographic of FSW weld; (f) SEM microstructure of FSW weld

    图3为母材和搅拌摩擦焊缝中析出相特征. 母材中M23C6碳化物和球状MX相分别均匀地分布在原奥氏体晶界和晶内(图3a, b). 焊后晶界处M23C6碳化物发生完全溶解,球状MX碳氮化物无明显变化,但对位错产生强烈的钉扎作用,同时在板条马氏体内生成大量的针状M3C相,主要由W,Cr,Fe和C组成(图3c ~ 3f). 这主要是由于M23C6碳化物的溶解在晶界和晶内之间产生C和Cr原子的浓度梯度,同时焊接过程中的奥氏体化再结晶和马氏体转变诱导位错和空位等晶格缺陷增殖,为针状M3C碳化物析出提供了形核质点和原子扩散通道,促进了M3C碳化物的析出[15].

    图  3  母材和搅拌摩擦焊缝析出相的特征
    Figure  3.  Characteristics of precipitates for base metal and FSW weld. (a) M23C6 phase in base metal; (b) MX phase in base metal; (c) M23C6 phase in FSW weld; (d) MX phase in FSW weld; (e) M3C phase in FSW weld; (f) energy spectrum of M3C phase

    表2为母材、电子束焊缝和搅拌摩擦焊缝硬度结果. 相比于9Cr-1.5W-0.15Ta耐热钢的硬度(272 HV),两种焊缝的硬度明显增大,电子束焊缝硬度值为475 HV,搅拌摩擦焊缝硬度值为425 HV. 焊缝区明显硬化,这是由于在焊接过程中焊接热循环峰值温度高于母材的相变温度,在焊后快速冷却导致焊缝中形成大量的板条状马氏体组织,使得焊缝的硬度增大[16-17].

    表  2  母材、电子束焊缝和搅拌摩擦焊缝显微硬度(HV)
    Table  2.  Microhardness of the base metal, EB and FSW welds
    母材EBW焊缝FSW焊缝
    272475425
    下载: 导出CSV 
    | 显示表格

    图4是9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击吸收能量. 由图可知,母材的冲击吸收能量为34.35 J,搅拌摩擦焊焊缝冲击吸收能量为31.1 J,而电子束焊焊缝的冲击吸收能量为4.2 J,仅为母材的12.2%和搅拌摩擦焊缝的13.5%.

    图  4  母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击韧性
    Figure  4.  Impact toughness of base materials, EBW and FSW welds at −20 ℃

    接头的力学性能主要取决于其微观组织特征. 与母材相比,搅拌摩擦焊接头韧性稍有降低,这是焊缝区晶粒细化、高角度晶界增加阻碍裂纹扩展而改善接头韧性和位错密度增加而恶化冲击性能的共同结果[18-20]. 除此之外,残余奥氏体的存在也对改善接头韧性具有重要影响[21]. 相比于搅拌摩擦焊接头,电子束焊接头韧性显著降低,这主要是由于在焊缝中树枝状组织的形成,使焊缝韧性明显降低. 另外,电子束焊接过程中热输入较大,引起晶粒粗化和析出相溶解等组织变化,对接头的冲击韧性产生重要影响.

    图5为母材、电子束焊缝和搅拌摩擦焊缝试样冲击后的断口形貌. 由于微观组织特征的差异,导致焊接接头力学性能的不同,同时也在冲击断口形貌上表现明显的不同. 母材的冲击断口形貌表现为典型的韧窝特征,并且韧窝大小和形状存在明显差别,发现小尺寸韧窝密度远多于大尺寸韧窝(图5a). 电子束焊缝冲击断口则表现为典型的解理断裂,同时局部还可以发现较深的裂纹(图5b). 搅拌摩擦焊缝冲击断口形貌均表现为大小和形状均匀的韧窝特征,在部分韧窝底部存在第二相粒子脱落的现象,并且由于冲击变形而形成少量的撕裂痕,断裂方式属于微孔聚集型断裂(图5c). 综上,母材和搅拌摩擦焊缝的冲击断裂方式属于典型的延性断裂,而电子束焊缝的冲击断裂方式属于脆性断裂.

    图  5  冲击试样的断口形貌
    Figure  5.  Fracture morphology of impact specimens. (a) base metal; (b) EBW weld; (c) FSW weld

    电子束焊缝和搅拌摩擦焊缝的冲击断口形貌与母材有不同程度的差异. 在搅拌摩擦焊缝中,由于发生动态再结晶,晶粒尺寸明显细化,同时仅部分低熔点析出相溶解,冲击断口表现尺寸较大的韧窝特征,导致冲击韧性发生稍稍降低. 然而,对于电子束焊缝,微观组织为粗大的树枝状晶,并且析出相均发生溶解,导致在冲击过程中协调变形能力变弱,断口表现为典型的解理断裂特征. 因此,电子束焊缝的冲击韧性显著降低.

    (1) 9Cr-1.5W-0.15Ta耐热钢电子束焊缝呈树枝状晶微观组织,晶粒粗大,组织不均匀,且析出相均发生溶解;搅拌摩擦焊缝则由细小、均匀的板条马氏体微观组织组成,部分晶界析出相发生溶解.

    (2) 由于在焊缝中有大量板条马氏体生成,9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的硬度值均发生了显著增大,电子束焊缝的硬度值最高可达到475 HV.

    (3) 两种焊缝的冲击韧性均低于母材,但由于电子束焊缝和搅拌摩擦焊缝中晶粒尺寸、析出相的差异,不同焊缝表现不同的力学性能. 电子束焊缝的冲击吸收能量仅为母材的12.2%;搅拌摩擦焊缝的力学性能较好,其冲击吸收能量为母材的90%.

  • 图  1   金属/CFRP黏接接头形式

    Figure  1.   The form of metal/CFRP adhesive-bonded joint

    图  2   金属/CFRP黏接界面结合机理

    Figure  2.   Mechanism of Metal/CFRP bonding

    图  3   金属/CFRP螺栓连接技术和铆钉连接技术

    Figure  3.   Metal/CFRP bolting technology and riveting technology

    图  4   金属/CFRP搅拌摩擦盲铆连接技术[29]

    Figure  4.   Metal/CFRP friction stir blind riveting technology

    图  5   金属/CFRP的z-pin连接技术

    Figure  5.   z-pin bonding technology of metal/CFRP

    图  6   金属/CFRP制备技术中的机械锁合效果

    Figure  6.   The mechanical locking of metal/CFRP. (a) vertical blind riveting; (b) self-punch riveting; (c) hot riveting

    图  7   金属/CFRTP单侧电阻点焊连接技术

    Figure  7.   Metal/CFRTP one-sided resistance spot welding technology

    图  8   金属/CFRTP激光焊接技术

    Figure  8.   Metal/CFRTP laser welding technology

    图  9   金属/CFRTP异质界面的化学键合以及冶金结合原理

    Figure  9.   Chemical bonding and metallurgical bonding principles at the metal/CFRTP heterogeneous interface

    图  10   采用不同连接技术CFRP/金属连接界面的结合强度分布

    Figure  10.   The bonding strength distribution of CFRP/metal connection interface of different bonding technologies

    表  1   不同黏接剂连接金属/CFRP复合材料性能

    Table  1   Properties of different adhesives bonding of metal/CFRP composite materials

    黏接剂名称黏接剂类型金属材质CFRP材质最优黏接强度τ /MPa
    TGJ[7]环氧树脂Q235钢UT70-303.36
    DP 490[8]环氧树脂7075铝合金CFRP
    Sikadur 330[9]双组份环氧树脂Q235钢EP/CF10.4
    J-241[11]改性环氧树脂铝合金EP/CF16.5
    J133[12]改性环氧树脂钛合金CFRP19.83
    SY-300K[13]改性环氧树脂铝合金BMI/CF21.9
    EA E-20HP[18]双组份环氧树脂A6061-T6铝合金CFRP16
    Araldite 420[20]环氧树脂低碳钢CFRP35
    DP 460[21]增韧环氧树脂7075铝合金3K-T70011.49
    DP 460[22]增韧环氧树脂7075铝合金EP/CF23.63
    下载: 导出CSV

    表  2   CFRP与金属连接材料的组合类别

    Table  2   The combining forms of CFRP/metal bonding

    连接方式钛合金铌合金镁合金铝合金不锈钢
    黏接参考文献[12, 16]参考文献[8, 11, 13-15, 17-19, 21-22]参考文献[7, 9, 10, 20]
    螺栓连接参考文献[23-24]
    铆接参考文献[26, 30-31]参考文献[32]参考文献[28-29]参考文献[25]
    钎焊参考文献[38-39]参考文献[38]参考文献[35-37]
    电阻焊参考文献[40, 42]参考文献[41]
    超声波焊参考文献[45]参考文献[43, 44, 46]
    激光焊参考文献[49, 50, 56]参考文献[48, 51-52]参考文献[55]参考文献[53-54]
    搅拌摩擦焊参考文献[62]参考文献[57-61, 63-64, 68]参考文献[69]
    下载: 导出CSV
  • [1] 王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020, 128(8): 48 − 49.

    Wang Junzhao. The application status and improvement of carbon fiber composite materials in the aviation field[J]. Manufacture& Upgrading Today, 2020, 128(8): 48 − 49.

    [2] 陈亚莉. F-35战斗机复合材料蒙皮的切削加工技术[J]. 航空制造技术, 2010(15): 34 − 36. doi: 10.3969/j.issn.1671-833X.2010.15.003

    Chen Yali. Cutting technology for F-35 composites skin[J]. Aeronautical Manufacturing Technology, 2010(15): 34 − 36. doi: 10.3969/j.issn.1671-833X.2010.15.003

    [3] 于跃. 碳纤维复合材料/铝合金冲铆接合研究[D]. 秦皇岛: 燕山大学, 2019.

    Yu Yue. Research on riveting joint of carbon fiber-reinforced plastic/aluminum alloy[D]. Qinhuangdao: Yanshan University, 2019.

    [4] 罗益锋. 碳纤维及其复合材料在主要应用领域的突破方向与技术进展[J]. 高科技纤维与应用, 2019, 44(6): 1 − 12.

    Luo Yifeng. Breakthrough direction and technical progress of carbon fiber and its CFRP in main application areas[J]. Hi-Tech Fiber and Application, 2019, 44(6): 1 − 12.

    [5] 王明猛. 碳纤维复合材料在高速列车上的应用研究[D]. 成都: 西南交通大学, 2012.

    Wang Mingmeng. Research on the application of carbon fiber composites on high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2012.

    [6]

    Malnati P, Composites-intensive masterwork: 2020 Corvette, Part 1[J]. Composites World, 2004.

    [7] 葛宏伟. CFRP粘结钢板复合构件的剥离性能试验研究[D]. 合肥: 合肥工业大学, 2007.

    Ge Hongwei. Experimental study on the peeling capability of steel plate strengthened with carbon fiber reinforced plastics[D]. Hefei: Hefei University of Technology, 2007.

    [8] 莫丽蓉, 陆湘贤, 封进, 等. FSAE赛车碳纤维悬架黏接件拉伸强度改进分析[J]. 桂林航天工业学院学报, 2018, 23(3): 329 − 333. doi: 10.3969/j.issn.1009-1033.2018.03.005

    Mo Lirong, Lu Xiangxian, Feng Jin, et al. Improved analysis of the stretch strength of racing carbon fiber suspension adhesives[J]. Journal of Guilin University of Aerospace Technology, 2018, 23(3): 329 − 333. doi: 10.3969/j.issn.1009-1033.2018.03.005

    [9] 朱德举, 姚明侠, 张怀安, 等. 动态拉伸荷载下温度对CFRP/钢板单搭接剪切接头力学性能的影响[J]. 土木工程学报, 2016, 49(8): 28 − 35. doi: 10.15951/j.tmgcxb.2016.08.003

    Zhu Deju, Yao Mingxia, Zhang Huaian, et al. Temperature effect on the mechanical properties of CFRP/Steel single-lap shear joints under dynamic tensile loading[J]. China Civil Engineering Journal, 2016, 49(8): 28 − 35. doi: 10.15951/j.tmgcxb.2016.08.003

    [10] 李传习, 李游, 贺君, 等. 固化剂对室温胶黏CFRP板/钢板界面性能的影响[J]. 建筑材料学报, 2021, 24(2): 339 − 347. doi: 10.3969/j.issn.1007-9629.2021.02.016

    Li Chuanxi, Li You, He Jun, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP laminate/steel plate cured at room temperature[J]. Journal of Building Materials, 2021, 24(2): 339 − 347. doi: 10.3969/j.issn.1007-9629.2021.02.016

    [11] 赵汉清, 赵玉宇, 于昕, 等. J-241室温固化耐150 ℃胶黏剂的制备与性能[J]. 化学与粘合, 2016(4): 272 − 275.

    Zhao Hanqing, Zhao Yuyu, Yu Xin, et al. Preparation and performance of 150 ℃ heat resistant adhesive J-241 curing at room temperature[J]. Chemistry and Adhesion, 2016(4): 272 − 275.

    [12] 崔永鹏, 何欣, 张凯. 钛合金和碳纤维的黏接技术[J]. 光学技术, 2012, 38(1): 125 − 128. doi: 10.3788/GXJS20123801.0125

    Cui Yongpeng, He Xin, Zhang Kai. Technique of cementation between the titanium alloys and carbon fibers[J]. Optical Technique, 2012, 38(1): 125 − 128. doi: 10.3788/GXJS20123801.0125

    [13] 乔海涛, 邹贤武. 碳纤维复合材料的胶接工艺与性能[J]. 宇航材料工艺, 2009, 39(1): 66 − 77. doi: 10.3969/j.issn.1007-2330.2009.01.019

    Qiao Haitao, Zou Xianwu. Process and performance of carbon fiber composites bonding[J]. Aerospace Materials & Tec-hnology, 2009, 39(1): 66 − 77. doi: 10.3969/j.issn.1007-2330.2009.01.019

    [14] 韩江义, 陈力. 碳纤维管与铝合金的胶接强度试验研究[J]. 现代制造工程, 2014(12): 64 − 67. doi: 10.3969/j.issn.1671-3133.2014.12.014

    Han Jiangyi, Chen Li. Study on bonding strength test between carbon fiber pipe and aluminium alloy[J]. Modern Manufacturing Engineering, 2014(12): 64 − 67. doi: 10.3969/j.issn.1671-3133.2014.12.014

    [15]

    Arenas J M, Alia C, Narbon J J, et al. Considerations for the industrial application of structural adhesive joints in the aluminium-composite material bonding[J]. Composites Part B-Engineering, 2013, 44(1): 417 − 423. doi: 10.1016/j.compositesb.2012.04.026

    [16]

    Wang W, Poulis J A, Freitas S T D, et al. Surface pretreatments on CFRP and titanium for manufacturing adhesively bonded bi-material joints[C]. //ECCM18 - 18th European Conference on Composite Materials, Athens, 2018.

    [17]

    Zhou Q, Ma Q, Zhou T, et al. The effects of interfacial connection condition on the characteristics of aluminum/CFRP hybrid tube under transverse quasi-static loading[J]. Fibers and Polymers, 2021, 22(6): 1761 − 1773. doi: 10.1007/s12221-021-0498-8

    [18]

    Kim J H, Lee C J, Min K D, et al. Intense pulsed light surface treatment for improving adhesive bonding of aluminum and carbon fiber reinforced plastic (CFRP)[J]. Composite Structures, 2021, 258: 113364. doi: 10.1016/j.compstruct.2020.113364

    [19]

    Okada T, Kanda M, Faudree M C, et al. Shear strength of adhesive lamination joint of aluminum and CFRP sheets treated by homogeneous low energy electron beam irradiation prior to lamination assembly and hot-press[J]. Materials Transactions, 2014, 55(10): 1587 − 1590. doi: 10.2320/matertrans.MAW201419

    [20]

    Al-Mosawe A, Al-Mahaidi R, Zhao X L. et al. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction & Building Materials, 2015, 98(15): 489 − 501.

    [21] 郝旭飞. 超声振动强化碳纤维铝材胶接工艺研究及应用[D]. 武汉: 武汉理工大学, 2018.

    Hao Xufei. Research and application of the process of ultra-sonic vibration strengthened adhesive bonding of CFRP-to-a-luminum joints[D]. Wuhan: Wuhan University of Technology, 2018.

    [22]

    Wu M, Tong X, Wang H, et al. Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent[J]. Polymers, 2020, 12(4): 947 − 965. doi: 10.3390/polym12040947

    [23] 张冠彪. 碳纤维层合板与铝合金板机械连接钉载分配研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Zhang Guanbiao. Study on the pin load distribution of multiple bolted between alloy plate and carbon fiber laminates[D]. Harbin: Harbin University of Technology, 2013.

    [24] 袁青祥. 碳纤维复合材料螺栓连接结构的力学性能分析[D]. 天津: 天津科技大学, 2017.

    Yuan Qingxiang. Mechanical properties analysis of carbon fiber composites bolted joints[D]. Tianjin: Tianjin University of Science and Technology, 2017.

    [25]

    Wagner J, Wilhelm M, Baier H, et al. Experimental analysis of damage propagation in riveted CFRP-steel structures by thermal loads[J]. International Journal of Advanced Manufacturing Technology, 2014, 75: 1103 − 1113. doi: 10.1007/s00170-014-6197-5

    [26]

    Kashaev N, Ventzke V, Riekehr S, et al. Assessment of alternative joining techniques for Ti-6Al-4V/CFRP hybrid joints regarding tensile and fatigue strength[J]. Materials & design, 2015, 81: 73 − 81.

    [27] 钟丽慧, 孔淑华, 刘志钢. 冲铆技术在汽车行业上的应用与控制[J]. 电焊机, 2013, 43(2): 111 − 116. doi: 10.7512/j.issn.1001-2303.2013.02.22

    Zhong Lihui, Kong Shuhua, Liu Zhigang. Application and controlling of punch riveting technology in auto production[J]. Electric Welding Machine, 2013, 43(2): 111 − 116. doi: 10.7512/j.issn.1001-2303.2013.02.22

    [28]

    Franco G D, Fratini L, Pasta A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives, 2013, 41(1): 24 − 32.

    [29]

    Min J, Li Y, Li J, et al. Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1403 − 1410. doi: 10.1007/s00170-014-6364-8

    [30]

    Altmeyer J, Santos J F D, Amancio-Filho S T. Effect of the friction riveting process parameters on the joint formation and performance of Ti alloy/short-fibre reinforced polyether ether ketone joints[J]. Materials & Design, 2014, 60: 164 − 176.

    [31] 崔旭, 田琳, 王道晟, 等. 一种热塑性材料与轻质合金的热铆连接方法: CN202011371747[P], 2021-03-30.

    Cui Xu, Tian Lin, Wang Daosheng, et al. A thermal riveting connection method between thermoplastic materials and lightweight alloys: CN202011371747[P], 2021-03-30.

    [32]

    Li S X, Khan H A, Hihara L H, et al. Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment[J]. Corrosion Science the Journal on Environmental Degradation of Materials & Its Control, 2018, 132: 300 − 309.

    [33]

    Carvalho W S, Schwemberger P, Haas F, et al. Investigation on the feasibility of joining additively manufactured metals and engineering thermoplastics by ultrasonic energy[Z]//XVI-1005-20. 2020.

    [34] 孙洋. 碳纤维复合材料连接结构的强度分析及其影响因素[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Sun Yang. Failure strength and main factors analysis of carbon fiber composites bolted joints[D]. Harbin: Harbin University of Technology, 2016.

    [35]

    Wang Y, Chai P, Guo X J, et al. Effect of connection processes on mechanical properties of 7B04 aluminum alloy structures[J]. China Welding, 2021, 30(2): 50 − 57.

    [36] 郭义, 刘鹏, 何治经. Al-C纤维复合材料微结构钎焊连接[J]. 焊接学报, 1993, 14(4): 233 − 240.

    Guo Yi, Liu Peng, He Zhijing. Investigation on microstructure brazing of Al/C fiber composite[J]. Transactions of the China Welding Institution, 1993, 14(4): 233 − 240.

    [37] 牛红伟, 赵宇, 刘多, 等. 碳纤维增强复合材料与金属钎焊研究[J]. 长春工业大学学报(自然科学版), 2016, 37(5): 442 − 448.

    Niu Hongwei, Zhao Yu, Liu Duo, et al. Development of metal brazing and carbon fiber reinforced composites[J]. Journal of Changchun University of Technology(Natural Science Edition), 2016, 37(5): 442 − 448.

    [38] 田英超, 曲文卿, 张智勇, 等. 碳纤维复合材料与金属的钎焊试验研究[J]. 航空制造技术, 2011(9): 82 − 84. doi: 10.3969/j.issn.1671-833X.2011.09.014

    Tian Yingchao, Qu Wenqing, Zhang Zhiyong, et al. Research of vacuum brazing of carbon fiber reinforced composites with metal[J]. Aeronautical Manufacturing Technology, 2011(9): 82 − 84. doi: 10.3969/j.issn.1671-833X.2011.09.014

    [39]

    Hu S P, Feng D D, Xia L, et al. Joints of continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites to Ti60 alloy brazed using Ti-Zr-Ni-Cu active alloy[J]. Chinese Journal of Aeronautics, 2019(3): 715 − 722.

    [40]

    Ageorges C, Ye L. Resistance welding of metal/thermoplastic composite joints[J]. Journal of Thermoplastic Composite Materials, 2001, 14: 449 − 475. doi: 10.1106/PN74-QXKH-7XBE-XKF5

    [41]

    Nagatsuka K, Xiao B, Wu L H, et al. Resistance spot welding of metal/carbon-fibre-reinforced plastics and applying silane coupling treatment[J]. Science and Technology of Welding and Joining, 2018, 23(3): 181 − 187. doi: 10.1080/13621718.2017.1362159

    [42]

    Ren S D, Ma Y W, Saeki S H, et al. Fracture mechanism and strength evaluation of Al5052/CFRP joint produced by coaxial one-side resistance spot welding[J]. Composite Structures, 2020, 252: 112766. doi: 10.1016/j.compstruct.2020.112766

    [43]

    Balle F, Wagner G, Eitler D. Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer - joints[J]. Materials Science & Engineering Technology, 2007, 38(11): 934 − 938. doi: 10.1002/mawe.200700212

    [44]

    Wagner G, Balle F, Eifler D. Ultrasonic welding of aluminum alloys to fiber reinforced polymers[J]. Advanced Engineering Materials, 2013, 15(9): 792 − 803. doi: 10.1002/adem.201300043

    [45]

    Zhou X, Zhao Y T, Chen X C, et al. Fabrication and mechanical properties of novel CFRP/Mg alloy hybrid laminates with enhanced interface adhesion[J]. Social Science Electronic Publishing, 2021, 197: 109251.

    [46]

    Staab F, Balle F. Ultrasonic torsion welding of ageing-resistant Al/CFRP joints: Properties, microstructure and joint formation[J]. Ultrasonics, 2019, 93: 139 − 154. doi: 10.1016/j.ultras.2018.11.006

    [47] 夏佩云, 李颖, 张婧, 等. 聚酰胺-不锈钢激光透射焊接工艺特性[J]. 中国激光, 2020, 47(6): 155 − 161.

    Xia Peiyun, Li Ying, Zhang Jing, et al. Characteristics of laser transmission welding polyamide-stainless steel[J]. Chinese Journal of Lasers, 2020, 47(6): 155 − 161.

    [48] 徐洁洁, 王栋, 肖荣诗, 等. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73 − 86.

    Xu Jiejie, Wang Dong, Xiao Rongshi, et al. Laser joining of fiber reinforced thermoplastic composites and metal[J]. Transactions of the China Welding Institution, 2021, 42(10): 73 − 86.

    [49]

    Tao W, Su X, Chen Y B, et al. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints[J]. Journal of Manufacturing Processes, 2019, 45: 1 − 8. doi: 10.1016/j.jmapro.2019.05.028

    [50]

    Su J H, Tan C W, Wu Z L, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124: 106006.

    [51]

    Wang D, Xu J J, Huang T, et al. Effect of beam shaping on laser joining of CFRP and Al-Li alloy[J]. Optics & Laser Technology, 2021, 143: 107336.

    [52] 周健, 刘双宇, 张福隆. 激光自蔓延连接CFRTP/铝接头微观形貌及形成机理[J]. 激光技术, 2019, 43(2): 147 − 153. doi: 10.7510/jgjs.issn.1001-3806.2019.02.001

    Zhou Jian, Liu Shuangyu, Zhang Fulong. Microstructure and formation mechanism of CFRTP/Al joints by laser induced self-propagating bonding[J]. Laser Technology, 2019, 43(2): 147 − 153. doi: 10.7510/jgjs.issn.1001-3806.2019.02.001

    [53]

    Wang F Y, Jiao J K, Wang Q, et al. A research on CFRP and stainless steel joining with fiber lasers [C]. //International Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, 2015, 709−715.

    [54]

    Jiao J K, Wang Q, Wang F Y, et al. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers[J]. Journal of Materials Processing Technology, 2017, 240: 362 − 369. doi: 10.1016/j.jmatprotec.2016.10.013

    [55]

    Kam D H, Jeon N K, Jeong T E, et al. Pre-inscribed laser surface pattering for increased joining strength in laser fusion bonding of CFRP and zinc-coated steel[J]. Applied Sciences, 2019, 9(21): 4640 − 4648. doi: 10.3390/app9214640

    [56]

    Tan C W, Su J H, Feng Z W, et al. Laser joining of CFRTP to titanium alloy via laser surface texturing[J]. Chinese Journal of Aeronautics, 2021, 34(5): 103 − 114. doi: 10.1016/j.cja.2020.08.017

    [57]

    Nagatsuka K, Xiao B, Atsuki T, et al. Dissimilar materials joining of Al alloy/CFRTP by friction lap joining[J]. Transactions of JWRI, 2015, 44(1): 9 − 14.

    [58]

    Lambiase F, Paoletti A, Durante M. Mechanism of bonding of AA7075 aluminum alloy and CFRP during friction assisted joining[J]. Composite Structures, 2021, 261(1): 113593.

    [59]

    Ogawa Y, Akebono H, Tanaka K, et al. Effect of welding time on fatigue properties of friction stir spot welds of Al to carbon fibre-reinforced plastic[J]. Science & Technology of Welding & Joining, 2019, 24(3): 235 − 242.

    [60]

    Goushegir S M, Santos J F, Amancio-Filho S T. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstruc-ture and mechanical performance[J]. Materials & Design, 2014, 54: 196 − 206.

    [61]

    Andre N M, Goushegir S M, Santos J F, et al. Friction spot joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms[J]. Composites Part B Engineering, 2016, 94: 197 − 208. doi: 10.1016/j.compositesb.2016.03.011

    [62]

    Amancio-Filho S T, Bueno C, Santos J F, et al. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures[J]. Materials Science & Engineering A, 2011, 528: 3841 − 3848.

    [63]

    Pabandi H K, Movahedi M, Kokabi A H. A new refill friction spot welding process for aluminum/polymer composite hybrid structures[J]. Composite Structures, 2017, 174: 59 − 69. doi: 10.1016/j.compstruct.2017.04.053

    [64] 姜春阳, 吴利辉, 常云龙, 等. 铝合金与树脂基复合材料的铆接/搅拌摩擦搭接复合焊接[J]. 航空学报, 2022, 43(2): 145 − 155. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202011

    Jiang Chunyang, Wu Lihui, Chang Yunlong, et al. Hybrid welding of riveting/friction stir lap joining of aluminum alloy to resin based composite[J]. Acta Aeronautica Astronautica Sinica, 2022, 43(2): 145 − 155. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202011

    [65]

    Liu Y F, Su J H, Ma G L, et al. Effect of the laser texturing width on hot-pressing joining of AZ31B and CFRTP[J]. Optics & Laser Technology, 2021, 143: 107350.

    [66]

    Liu F C, Dong P, Lu W, et al. On formation of Al-O-C bonds at aluminum/polyamide joint interface[J]. Applied Surface Science, 2019, 466: 202 − 209. doi: 10.1016/j.apsusc.2018.10.024

    [67] 廖伟. 304不锈钢与塑料异种材料激光振荡扫描焊接工艺及机理研究[D]. 武汉: 华中科技大学, 2019.

    Liao Wei. Laser oscillating welding of 304 stainless steel to plastic[D]. Wuhan: Huazhong University of Science & Technology, 2019.

    [68]

    Nagatsuka K, Tanaka H, Xiao B, et al. Effect of silane coupling treatment on the joint characteristics of friction lap joined Al alloy/CFRP[J]. Quarterly Journal of the Japan Welding Society, 2015, 33(4): 317 − 325. doi: 10.2207/qjjws.33.317

    [69] 李红, 刘旭升, 张宜生, 等. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853 − 3861,3881. doi: 10.11896/cldb.19020049

    Li Hong, Liu Xu Sheng, Zhang Yisheng, et al. Current research challenges in innovative technology of joining dissimilar materials for electric vehicles[J]. Materials Reports, 2019, 33(23): 3853 − 3861,3881. doi: 10.11896/cldb.19020049

  • 期刊类型引用(1)

    1. 晏嘉陵,齐彦昌,刘明星,常子金,吴赵波,崔冰. 焊缝填充量对15Cr2Mo1耐热钢焊接修复性能的影响. 焊接. 2024(09): 56-61 . 百度学术

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  1208
  • HTML全文浏览量:  133
  • PDF下载量:  240
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回