Analysis of the strengthening and toughening mechanism of deposited metal of 1000 MPa grade high strength steel
-
摘要: 自主设计4种不同镍含量(ωNi)的Ni-Cr-Mo系焊丝,采用TIG焊制备1 000 MPa级高强钢熔敷金属. 利用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪等对不同镍含量的熔敷金属微观组织进行表征,通过拉伸、冲击、硬度试验对熔敷金属力学性能进行测试,探求镍含量对1 000 MPa级高强钢熔敷金属强韧性机理的影响规律. 结果表明,不同镍含量熔敷金属组织均由板条马氏体、板条贝氏体、联合贝氏体和残余奥氏体组成;镍含量不同,微观组织不同;随着镍含量增加,柱状晶宽度增大,板条马氏体、联合贝氏体和残余奥氏体增多,板条贝氏体减少,熔敷金属强度提高,塑性降低;当ωNi为5.44%时,强韧匹配最佳,屈服强度为1 005 MPa,−50 ℃下冲击吸收能量为95 J.
-
关键词:
- Ni元素 /
- 1 000 MPa级熔敷金属 /
- 微观组织 /
- 强韧化机理
Abstract: Four kinds of Ni-Cr-Mo wire with different Ni contents were designed, with which the deposited metal of 1000 MPa high strength steel was prepared by TIG welding. Optical microscope , scanning electron microscope, transmission electron microscope, and X-ray diffractometer were used to characterize the microstructure of the deposited metal with varying Ni contents. The mechanical properties of the deposited metal were tested in terms of tensile, impact and hardness to investigate the influencing mechanism of varying Ni contents on the strength and toughness of deposited metal of 1000 MPa high strength steel. The results show that the microstructure of the deposited metal, though with different Ni contents, is composed of lath martensite, lath bainite, combined bainite and retained austenite. Different Ni contents result in different microstructures. With the increase of Ni contents, the width of columnar grains grows, the number of lath martensite, combined bainite and retained austenite also increases, and the number of lath bainite decreases, which have enhanced the strength but weakened the plasticity of the deposited metal. When the Ni content is 5.44 %, the strength- toughness matching is optimal, with the yield strength reaching 1005 MPa, and the impact energy is 95 J at −50 ℃. -
-
表 1 熔敷金属化学成分(质量分数,%)
Table 1 Chemical compositons of deposited metals
编号 C Si Mn Ni Cr + Mo S P 1 0.055 0.32 1.66 2.48 1.50 0.004 3 <0.005 2 0.050 0.31 1.63 3.32 1.49 0.003 8 <0.005 3 0.054 0.34 1.70 4.59 1.51 0.004 2 0.002 4 0.060 0.32 1.60 5.44 1.52 0.003 9 <0.005 -
[1] 赵捷. 我国高品质船舶、海洋工程用钢研究进展[J]. 材料导报, 2018, 32(S1): 428 − 431. Zhao Jie. Progress on high quality ship steel and marine engineering steel in China[J]. Materials Reports, 2018, 32(S1): 428 − 431.
[2] 马天恒. Q960E钢气保护焊配套实心焊丝的研究[D]. 镇江: 江苏科技大学, 2013. Ma Tianheng. Research on supporting solid wire for Q960E steel gas shielded welding[D]. Jiangsu: Jiangsu University of Science and Technology, 2013.
[3] 武丹. 合金元素对Q960钢焊缝金属强韧化作用机理研究[D]. 沈阳: 沈阳工业大学, 2019. Wu Dan. Study on strengthening and toughening mechanicsm of alloy elements on weld metal of Q960 steel[D]. Shenyang: Shenyang University of Technology, 2019.
[4] 中国机械工程学会焊接分会. 焊接手册— —焊接结构[M]. 第3版. 北京: 机械工业出版社, 2008. Chinese Welding Society. Welding handbook— —welding structure[M]. 3 edition. Beijing: China Machine Press, 2008.
[5] Sun J, Wei S T, Lu S P. Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe-Cr-Ni-Mo weld metal[J]. Materials Science & Engineering: A, 2020, 772(20): 138739.
[6] 官春平. Ni对600 MPa级高强钢焊缝组织和性能的影响[J]. 电焊机, 2017, 47(11): 120 − 124. Guan Chunping. Effect of Ni on microstructure and properties of welds in 600 MPa grade high strength steel[J]. Electric Welding Machine, 2017, 47(11): 120 − 124.
[7] 郭栖利, 毛高军, 蒋勇, 等. 镍含量对高强钢熔敷金属性能和组织的影响[J]. 机械制造文摘——焊接分册, 2015(5): 1 − 7. Guo Xili, Mao Gaojun, Jiang Yong, et al. Effect of Ni content on the properties and microstructure of high-strength steel[J]. Welding Digest of Machinery Manufacturing, 2015(5): 1 − 7.
[8] Mao G J, Cao R, Cyril C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints[J]. Journal of Materials Processing Technology, 2018, 262: 638 − 649. doi: 10.1016/j.jmatprotec.2018.07.009
[9] 彭杏娜, 彭云, 田志凌, 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响[J]. 焊接学报, 2014, 35(9): 32 − 36. Peng Xingna, Peng Yun, Tian Zhiling, et al. Effect of Ni on the microstructure evolution of Cr-Ni-Mo series high strength weld metal[J]. Transactions of the China Welding Institution, 2014, 35(9): 32 − 36.
[10] 郑文健, 贺艳明, 杨建国, 等. 焊接熔池凝固过程联生结晶晶体学取向对线性不稳定动力学的影响[J]. 机械工程学报, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062 Zheng Wenjian, He Yanming, Yang Jianguo, et al. Influence of the crystal orientation of epitaxial solidification on the linear instability dynamic during the solidification of welding pool[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062
[11] 彭必荣, 卢庆华, 何晓峰, 等. 机械振动对激光焊接接头组织的影响[J]. 机械工程学报, 2015, 51(20): 94 − 100. doi: 10.3901/JME.2015.20.094 Peng Birong, Lu Qinghua, He Xiaofeng, et al. Effects of mechanical vibration on microstructure of laser welded joint[J]. Journal of Mechanical Engineering, 2015, 51(20): 94 − 100. doi: 10.3901/JME.2015.20.094
[12] 刘宗昌, 任慧平. 贝氏体与贝氏体相变[M]. 北京: 冶金工业出版社, 2009. Liu Zongchang, Ren Huiping. Bainite and Bainite Transformation[M]. Bijing: Metallurgical Industry Press, 2009.
[13] Zhang Z, Farrar R A. Columnar grain development in C-Mn-Ni low-alloy weld metals and the influence of nickel[J]. Journal of Materials Science, 1995, 30(22): 5581 − 5588. doi: 10.1007/BF00356690
[14] 栗卓新, 苏小虎, 李红, 等. 690 MPa级以上高强钢焊接熔敷金属微观组织及其联合贝氏体的研究进展[J]. 中国材料进展, 2019, 38(12): 1169 − 1176. Li Zhuoxin, Su Xiaohu, Li Hong, et al. Research progress on microstructure and coalesced bainite of welded depo sited metal to high-strength steel with tensile strength above 690 MPa[J]. Materials China, 2019, 38(12): 1169 − 1176.
[15] Keehan E, Karlsson L, Andren H O. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals Part 1—Effect of nickel content[J]. Science and Technology of Welding, 2006(11): 1 − 8.
[16] Liu J W, Sun J, Wei S T. Influence of chromium content on the bainite transformation nucleation mechanism and the properties of 800 MPa grade low carbon bainite weld deposited metal[J]. Materials Science & Engineering: A, 2022, 11(6): 2 − 16.
[17] Chang L C, Bhadeshia H. Microstructure of lower bainite formed at large undercoolings below bainite start temperature[J]. Metal Science Journal, 1996, 12(3): 233 − 236.
[18] Singh S B, Bhadeshia H. Estimation of bainite plate-thickness in low-alloy steels[J]. Materials Science & Engineering: A, 1998, 245(1): 72 − 79. doi: 10.1016/S0921-5093(97)00701-6
[19] 彭杏娜, 彭云, 彭先宽, 等. 多层多道TIG焊对高强钢焊缝组织和韧性的影响[J]. 机械工程学报, 2017, 53(18): 106 − 112. doi: 10.3901/JME.2017.17.106 Peng Xingna, Peng Yun, Peng Xiankuan, et al. Influence of multi-layer and multi-pass TIG welding process on the high strength weld metal microstructure and toughness[J]. Journal of Mechanical Engineering, 2017, 53(18): 106 − 112. doi: 10.3901/JME.2017.17.106
[20] 安同邦, 田志凌, 单际国, 等. 焊接方法对1000 MPa级熔敷金属组织及力学性能的影响[J]. 焊接学报, 2015, 36(11): 101 − 104,118. An Tongbang, Tian Zhiling, Shan Jiguo, et al. Effect of welding methods on microstructure and mechanical properties of 1 000 MPa grade deposited metal[J]. Transactions of the China Welding Institution, 2015, 36(11): 101 − 104,118.
[21] 严春妍, 李午申, 刘欢, 等. 9%Ni钢焊接粗晶区的韧化因素[J]. 机械工程学报, 2010, 46(18): 96 − 101. doi: 10.3901/JME.2010.18.096 Yan Chunyan, Li Wushen, Liu Huan, et al. Factors influencing notch toughness of coarse-grained heat affected zone for 9% Ni steel[J]. Journal of Mechanical Engineering, 2010, 46(18): 96 − 101. doi: 10.3901/JME.2010.18.096
[22] 吴炳智, 荆文, 徐玉君, 等. 960 MPa级熔敷金属组织及冲击韧性分析[J]. 焊接学报, 2015, 36(6): 77 − 80,117. Wu Bingzhi, Jing Wen, Xu Yujun, et al. Analysis on microstructure and impact absorbed energy of 960 MPa deposited metal[J]. Transactions of the China Welding Institution, 2015, 36(6): 77 − 80,117.
[23] Kang B Y, Kim H J, Hwang S K. Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals[J]. ISIJ International, 2000, 40(12): 1237 − 1245. doi: 10.2355/isijinternational.40.1237
[24] Khodira S, Shibayanagib T, Takahashi M, et al. Microstructural evolution and mechanical properties of high strength 3-9% Ni-steel alloys weld metals produced by electron beam welding[J]. Materials & Design, 2014, 60: 391 − 400. doi: 10.1016/j.matdes.2014.03.056
[25] 左月, 康举, 安同邦, 等. 核用460 MPa级高强钢焊条熔敷金属强韧化机理研究[J]. 压力容器, 2021, 38(12): 7 − 14. doi: 10.3969/j.issn.1001-4837.2021.12.002 Zuo Yue, Kang Ju, An Tongbang, et al. Study on strengthening and toughening mechanism of deposited metal from covered electrodes for nuclear 460 MPa high strength steel[J]. Pressure Vessel Technology, 2021, 38(12): 7 − 14. doi: 10.3969/j.issn.1001-4837.2021.12.002
-
期刊类型引用(2)
1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看
其他类型引用(1)