高级检索

中厚板脉冲双丝高速打底焊自由成形及稳定性分析

陶星空, 杨环宇, 巴现礼, 刘黎明

陶星空, 杨环宇, 巴现礼, 刘黎明. 中厚板脉冲双丝高速打底焊自由成形及稳定性分析[J]. 焊接学报, 2023, 44(5): 14-19. DOI: 10.12073/j.hjxb.20220607001
引用本文: 陶星空, 杨环宇, 巴现礼, 刘黎明. 中厚板脉冲双丝高速打底焊自由成形及稳定性分析[J]. 焊接学报, 2023, 44(5): 14-19. DOI: 10.12073/j.hjxb.20220607001
TAO Xingkong, YANG Huanyu, BA Xianli, LIU Liming. Analysis on free forming and stability of pulsed double wire high speed backing welding of Medium-Thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 14-19. DOI: 10.12073/j.hjxb.20220607001
Citation: TAO Xingkong, YANG Huanyu, BA Xianli, LIU Liming. Analysis on free forming and stability of pulsed double wire high speed backing welding of Medium-Thick plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 14-19. DOI: 10.12073/j.hjxb.20220607001

中厚板脉冲双丝高速打底焊自由成形及稳定性分析

基金项目: 国家自然科学基金资助项目(52175290)
详细信息
    作者简介:

    陶星空,博士研究生;主要从事激光-电弧复合热源物理机制及工艺研究;Email: txk201809@mail.dlut.edu.cn

    通讯作者:

    刘黎明,教授,博士研究生导师;Email: liulm@dlut.edu.cn

  • 中图分类号: TG 444

Analysis on free forming and stability of pulsed double wire high speed backing welding of Medium-Thick plate

  • 摘要: 采用不同直流脉冲匹配的tandem焊枪实现了12 mm厚Q235钢共熔池打底焊接,并利用高速图像(HSI)和实时电信号对焊接过程进行实时动态检测,研究了焊接速度对焊缝成形、焊接电弧形态和焊接过程稳定性的影响. 结果表明,焊接速度主要对焊缝成形和焊接过程稳定性造成影响,对电弧形态的影响不大. 随着焊接速度的增加,电弧稳定性先增大后减小,在焊接速度为40 mm/s时,背部自由成形最佳. 不同焊接速度下,主丝电弧都保持较高的挺度,几乎不发生偏移,从丝电弧形态在单个脉冲周期内通过产生9° ~ 15°的规律性摆动,促进熔池中部金属向侧壁流动,减小熔池后端金属的累积,从而消除焊缝表面的驼峰和起脊缺陷,提升了整体光洁度. 主丝的焊接稳定性整体高于从丝,当焊接速度为40 mm/s时,两电弧稳定性最好.
    Abstract: The 12 mm thick Q235 steel eutectic pool backing welding is realized by using tandem welding torches matched with different DC pulse frequencies. High-speed image (HSI) and real-time electrical signals are used to monitor the welding process in real time. The effects of welding speed on weld formation, arc morphology and welding process stability are studied. The results show that the welding speed mainly affects the weld forming and welding process stability, but has little influence on the arc morphology. With the increase of welding speed, the arc stability increases first and then decreases. When the welding speed reaches 40 mm/s, the best back free forming is achieved. At different welding speeds, the leading wire arc maintains a high stiffness and hardly deviates. The trailing wire arc forms a regular swing of 9° − 15° in a single pulse cycle, which promotes the metal in the middle of the molten pool to move to the side. The molten flow reduces the metal accumulation at the rear of the molten pool, thereby eliminating hump and ridge defects on the weld surface and improving the overall finish. The welding stability of the leading wire is generally higher than that of the trailing wire. When the welding speed is 40 mm/s, the stability of the arcs is the best.
  • 图  1   焊接装置示意图

    Figure  1.   Schematic diagram of welding device

    图  2   不同焊接速度下焊缝正背面及接头截面形貌

    Figure  2.   Weld bead and joint cross-sectional morphology obtained at different welding speeds

    图  3   打底焊缝截面成形参数

    Figure  3.   Forming parameters of backing weld section

    图  4   焊接速度对侧壁熔深的影响

    Figure  4.   Effect of welding speed on sidewall penetration

    图  5   焊接速度对金属填充高度及焊缝背面熔宽与余高之比的影响

    Figure  5.   Effect of welding speed on metal filling height and the ratio of weld back fusion width to reinforcement

    图  6   焊接速度对焊缝背面余高的影响

    Figure  6.   Effect of welding speed on weld back reinforcement

    图  7   不同焊接速度下的双电弧形态

    Figure  7.   Double arc shape under different welding speeds

    图  8   作用在电弧上的电磁力示意图

    Figure  8.   Schematic diagram of electromagnetic force on arc

    图  9   不同焊接速度下双丝电压和电流变异系数

    Figure  9.   Variation coefficient of double wires at different welding speeds. (a) CV of voltage; (b) CV of current

    图  10   不同焊接速度下主丝的电压和电流概率密度分布

    Figure  10.   Probability density distribution of voltage and current of leading wire at different welding speeds. (a) Voltage probability density; (b) Current probability density

    图  11   不同焊接速度下从丝的电压和电流概率密度分布

    Figure  11.   Probability density distribution of voltage and current of trailing wire at different welding speeds. (a) Voltage probability density; (b) Current probability density.

  • [1]

    Jiang J, Zhou J, Chen C, et al. Research on multi-objective optimization of GMAW welding of DH36 steel[J]. China welding, 2021, 30(2): 25 − 34.

    [2]

    Scalet Rossini L F, Valenzuela Reyes R A, Spinelli J E. Double-wire tandem GMAW welding process of HSLA50 steel[J]. Journal of Manufacturing Processes, 2019, 45: 227 − 233. doi: 10.1016/j.jmapro.2019.07.004

    [3] 吴开源, 陈梓威, 黄浩, 等. 低频相位对双丝双脉冲GMAW熔滴过渡和焊缝成形的影响[J]. 焊接学报, 2022, 43(7): 43 − 48.

    Wu Kaiyuan, Chen Ziwei, Huang Hao, et al. Effect of low-frequency phase on metal transfer and weld formation in double-wire double-pulse GMAW[J]. Transactions of the China Welding Institution, 2022, 43(7): 43 − 48.

    [4]

    Liu Liming, Zhou Yanbin. Mechanism analysis of free formation of backing weld by the pulsed MAG-TIG double arc tandem welding[J]. China Welding, 2019, 28(4): 8 − 15.

    [5]

    Wu K, Wang J, Yin T, et al. Double arc interference and dynamic behavior characteristics of double wire double-pulsed GMAW[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 991 − 1002. doi: 10.1007/s00170-017-1269-y

    [6]

    Chinakhov D A, Solodsky S A, Rodionov P V, et al. Energy parameters of weld formation process in MIG-MAG welding[J]. Materials Science Forum, 2018, 927: 99 − 105. doi: 10.4028/www.scientific.net/MSF.927.99

    [7]

    Zhou Y, Zhang Z, Liu L. Effect of arc distance on back appearance of root welding without backing plate by PMAG-TIG twin-arc welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12): 3583 − 3592. doi: 10.1007/s00170-017-0393-z

    [8]

    Yao P, Zhou K. Research of a multi-frequency waveform control method on double-wire MIG arc welding[J]. Applied Sciences, 2017, 7(2): 171 − 186. doi: 10.3390/app7020171

    [9] 张菁. 双丝GMAW电弧干扰及焊接工艺研究[D]. 上海: 上海交通大学, 2015.

    Zhang Jing. The arc interference research and welding process of twin-wire GMAW[D]. Shanghai: Shanghai Jiao tong University, 2015.

    [10]

    Zhang S, Wang Y, Zhu M, et al. Effects of heat source arrangements on laser-MAG hybrid welding characteristics and defect formation mechanism of 10CrNi3MoV steel[J]. Journal of Manufacturing Processes, 2020, 58: 563 − 573. doi: 10.1016/j.jmapro.2020.08.027

    [11] 刁国宁, 徐国敏, 张天奕, 等. 焊丝伸出长度对三丝间接电弧焊稳定性和焊缝成形的影响[J]. 焊接学报, 2022, 43(3): 31 − 36.

    Diao Guoning, Xu Guomin, Zhang Tianyi, et al. Effect of wire extension on stability and bead formation of triple-wire gas indirect arc welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 31 − 36.

  • 期刊类型引用(1)

    1. 张德龙,张宏乐,王宇凯,赵彦军,田锦涛,杜春峰. 重型结构件智能焊接工艺及参数优化研究与应用. 中国机械. 2023(32): 38-41+45 . 百度学术

    其他类型引用(1)

图(11)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  47
  • PDF下载量:  70
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回