高级检索

焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响

乔永丰, 雷玉成, 姚奕强, 王泽宇, 朱强

乔永丰, 雷玉成, 姚奕强, 王泽宇, 朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响[J]. 焊接学报, 2023, 44(5): 77-83, 94. DOI: 10.12073/j.hjxb.20220528001
引用本文: 乔永丰, 雷玉成, 姚奕强, 王泽宇, 朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响[J]. 焊接学报, 2023, 44(5): 77-83, 94. DOI: 10.12073/j.hjxb.20220528001
QIAO Yongfeng, LEI Yucheng, YAO Yiqiang, WANG Zeyu, ZHU Qiang. Effect of welding method on irradiation damage resistance of 316L stainless steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 77-83, 94. DOI: 10.12073/j.hjxb.20220528001
Citation: QIAO Yongfeng, LEI Yucheng, YAO Yiqiang, WANG Zeyu, ZHU Qiang. Effect of welding method on irradiation damage resistance of 316L stainless steel weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 77-83, 94. DOI: 10.12073/j.hjxb.20220528001

焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响

基金项目: 国家自然科学基金资助项目(51875264)
详细信息
    作者简介:

    乔永丰,博士研究生;主要研究方向为材料辐照效应;Email: 2111905003@stmail.ujs.edu.cn

    通讯作者:

    雷玉成,教授,博士研究生导师;Email: yclei@ujs.edu.cn

  • 中图分类号: TG 442

Effect of welding method on irradiation damage resistance of 316L stainless steel weld

  • 摘要: 为探究焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响,采用原子力显微镜(atomicforce microscopy, AFM )、扫描电子显微镜(scanning electron microscopy,SEM )、掠入射X射线衍射(grazing incidence X-ray diffraction,GIXRD )、拉伸和纳米压痕技术等方法,对不同焊接方法制备的经能量为70 keV、剂量为1 × 1017 ions/cm2的He + 辐照后的316L奥氏体不锈钢焊缝损伤情况及力学性能进行了研究. 结果表明,离子辐照后不同焊缝表面均产生了空洞等微观缺陷,力学性能呈现不同程度的降低. 辐照后TIG焊缝表现出更优异的抗辐照损伤性能. TIG焊缝中更多的缺陷阱有效阻碍了辐照点缺陷的相互聚集,使辐照后焊缝内形成的缺陷数量更少、尺寸更小. 表明改变焊接方法、细化焊缝晶粒来提高焊缝抗辐照损伤性能及抗辐照硬化性能,是一种可行的思路与方法.
    Abstract: To explore the influence of welding methods on the irradiation damage resistance of 316L stainless steel welds, 316L austenitic stainless-steel welds prepared by different welding methods were exposed to He+ ions with 70 keV energy to a dose of 1 × 1017 ions/cm2 at room temperature. The welds were analyzed using atomic force microscopy (AFM), scanning electron microscopy (SEM), grazing incident X-ray diffraction (GIXRD), tensile testing, and nanoindentation techniques. The results showed that microdefects such as voids appeared on the surfaces of different weld joints after ion irradiation, and the mechanical properties decreased to varying degrees. TIG welds exhibited better irradiation damage resistance after irradiation. This is because more defect traps in TIG welds effectively prevent the mutual aggregation of irradiation point defects, resulting in fewer and smaller defects formed in the weld after irradiation. This indicates that refining the weld grain and improving weld resistance to irradiation damage and irradiation hardening by changing the welding method is a feasible idea and method.
  • 图  1   焊缝取样示意图

    Figure  1.   Schematic diagram of weld sampling

    图  2   拉伸样示意图(mm)

    Figure  2.   Schematic diagram of tensile specimen

    图  3   辐照损伤与氦浓度沿深度分布

    Figure  3.   Distribution of irradiation damage and helium concentration along depth

    图  4   不同焊缝辐照前后表面AFM图及粗糙度统计图

    Figure  4.   Surface AFM diagram and roughness statistics of different welds before and after irradiation. (a) SAW before irradiation; (b) SMAW before irradiation; (c) TIG before irradiation; (d) SAW after irradiation; (e) SMAW after irradiation; (f) TIG after irradiation; (g) Roughness of SAW; (h) Roughness of SMAW; (i) Roughness of TIG

    图  5   不同焊缝辐照前后表面SEM图及空洞统计图

    Figure  5.   Surface SEM diagram and voids statistical diagram of different welds before and after irradiation. (a) SAW before irradiation; (b) SMAW before irradiation; (c) TIG before irradiation; (d) SAW after irradiation; (e) SMAW after irradiation; (f) TIG after irradiation; (g) Voids of SAW; (h) Voids of SMAW; (i) Voids of TIG

    图  6   不同焊缝辐照前后GIXRD图

    Figure  6.   GIXRD diagram of different welds before and after irradiation. (a) Full peak diffraction pattern; (b) Diffraction pattern of (111) crystal plane

    图  7   不同焊缝辐照前后抗拉强度图

    Figure  7.   Tensile strength of different welds before and after irradiation

    图  8   辐照前后不同焊缝经拉伸后的表面形貌图

    Figure  8.   Surface SEM of different welds after stretching before and after irradiation. (a) SEM of SAW before irradiation; (b) SEM of SMAW before irradiation; (c) SEM of TIG before irradiation; (d) SEM of SAW after irradiation; (e) SEM SMAW after irradiation; (f) SEM of TIG after irradiation

    图  9   不同焊缝辐照前后纳米压痕测试曲线

    Figure  9.   Nano-indentation test curves of different welds before and after irradiation. (a) load-depth curve; (b) Nano hardness-depth curve; (c) elastic modulus-depth curve

    图  10   源硬化过程示意图

    Figure  10.   Schematic diagram of source hardening process

    图  11   摩擦硬化过程示意图

    Figure  11.   Schematic diagram of friction hardening process. (a) dislocation cutting through precipitate particles; (b) dislocation cutting through voids

    表  1   316L不锈钢及填充材料化学成分(质量分数,%)

    Table  1   Chemical compositions of 316L stainless steel and filler materials

    材料CrMnSiMoNiPSCFe
    316L16.671.070.362.0610.560.030.020.02余量
    ER316L18.731.850.382.3612.50.030.020.02余量
    E316L18.851.960.392.4312.10.030.020.02余量
    下载: 导出CSV

    表  2   316L不锈钢焊接工艺参数

    Table  2   Welding parameters of 316L stainless steel

    参数埋弧焊焊条电弧焊钨极氩弧焊
    坡口形状(mm)
    焊接电流I/A420 ~ 500120 ~ 15080 ~ 120
    焊接电压U/V28 ~ 3220 ~ 308 ~ 15
    填充材料ER316LE316LER316L
    焊丝直径d/mm43.22
    焊剂或保护气SJ601AAr(体积分数为99.9%)
    焊接速度v/(mm·s−1)450 ~ 520100 ~ 180100 ~ 160
    焊缝截面积S/mm2403.9313.2258.2
    下载: 导出CSV
  • [1]

    Chandrasekar V, Ramkumar K D. Effect of Nb-free consumables on the microstructure and structural integrity of pressure vessel grades of dissimilar austenitic stainless steel welded joints[J]. Journal of Materials Research and Technology, 2022, 18: 3443 − 3456.

    [2]

    Fukumoto K I, Mabuchi T, Yabuuchi K, et al. Irradiation hardening of stainless steel model alloy after Fe-ion irradiation and post-irradiation annealing treatment[J]. Journal of Nuclear Materials, 2021, 557: 153296. doi: 10.1016/j.jnucmat.2021.153296

    [3]

    Nozawa T, Koyanagi T, Katoh Y, et al. Failure evaluation of neutron-irradiated SiC/SiC composites by underwater acoustic emission[J]. Journal of Nuclear Materials, 2022, 566: 153787. doi: 10.1016/j.jnucmat.2022.153787

    [4]

    Pang L, Tai P, Chang H, et al. Defects evolution induced by Fe and He ions irradiation in Ti3AlC2[J]. Journal of Nuclear Materials, 2022, 558: 153357. doi: 10.1016/j.jnucmat.2021.153357

    [5]

    Chen W Y, Li M, Kirk M A, et al. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel[J]. Journal of Nuclear Materials, 2016, 471: 184 − 192. doi: 10.1016/j.jnucmat.2015.08.032

    [6]

    Gao J, Song P, Huang Y J, et al. Effects of neutron irradiation on 12Cr–6Al-ODS steel with electron-beam weld line[J]. Journal of Nuclear Materials, 2019, 524: 1 − 8. doi: 10.1016/j.jnucmat.2019.06.028

    [7]

    Kelemen M, Schwarz-Selinger T, Mutzke A, et al. Influence of surface roughness on the sputter yield of Mo under keV D ion irradiation[J]. Journal of Nuclear Materials, 2021, 555: 153135. doi: 10.1016/j.jnucmat.2021.153135

    [8]

    Bonny G, Konstantinovic M J, Bakaeva A, et al. Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten[J]. Acta Materialia, 2020, 198: 1 − 9. doi: 10.1016/j.actamat.2020.07.047

    [9] 李军兆, 孙清洁, 于航, 等. 薄板TC4钛合金TIG电弧和激光焊接接头晶粒尺寸与微观组织[J]. 焊接学报, 2022, 43(10): 56 − 62,70.

    Li Junzhao, Sun Qingjie, Yu Hang, et al. Study on grain size and microstructure of TC4 titanium alloy TIG and laser welding joint[J]. Transactions of the China Welding Institution, 2022, 43(10): 56 − 62,70.

    [10]

    Gan S, Liu H, Zhai Z, et al. A review of welding residual stress test methods[J]. China Welding, 2022, 31(2): 45 − 55.

    [11]

    Linga M K. Role and significance of source hardening in radiation embrittlement of iron and ferritic steels[J]. Journal of Nuclear Materials, 1999, 270(1): 115 − 128.

    [12]

    Tanigawa H, Klueh R L, Hashimoto N, et al. Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 ℃[J]. Journal of Nuclear Materials, 2009, 386-388: 231 − 235. doi: 10.1016/j.jnucmat.2008.12.094

  • 期刊类型引用(5)

    1. 樊景博,田祎,任鑫博. 基于计算机视觉技术的焊接机器人定位精度分析. 微型电脑应用. 2021(02): 15-17 . 百度学术
    2. 肖文波,何银水,袁海涛,马国红. 镀锌钢GMAW焊缝成形特征与焊枪方向同步实时检测. 焊接学报. 2021(12): 78-82+101 . 本站查看
    3. 陈继传. 工艺改进型料槽机器人焊接工作站. 科技风. 2020(11): 172 . 百度学术
    4. 洪磊,杨小兰,王保升,吕东升. 基于球面均匀分布的焊接机器人TCP标定方法. 焊接学报. 2020(08): 14-21+98 . 本站查看
    5. 杨秀芝,张锐,王兴东,蒋宇辉,王子涵. 基于PSD的薄板焊接坡口信号识别系统. 焊接. 2020(10): 28-33+62-63 . 百度学术

    其他类型引用(3)

图(11)  /  表(2)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  60
  • PDF下载量:  71
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-05-27
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回