高级检索

快速电弧模式增材制造316L不锈钢组织与性能

王强, 王磊磊, 高转妮, 杨兴运, 占小红

王强, 王磊磊, 高转妮, 杨兴运, 占小红. 快速电弧模式增材制造316L不锈钢组织与性能[J]. 焊接学报, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
引用本文: 王强, 王磊磊, 高转妮, 杨兴运, 占小红. 快速电弧模式增材制造316L不锈钢组织与性能[J]. 焊接学报, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
Citation: WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001

快速电弧模式增材制造316L不锈钢组织与性能

基金项目: 江苏省自然科学基金资助项目(BK20200431);国防基础科研计划资助项目(JCKY2020605C006)
详细信息
    作者简介:

    王强,硕士;主要研究方向为金属的电弧增材制造与激光熔化沉积制造; Email: qiang_wang0818@163.com

    通讯作者:

    占小红,博士,教授;Email: xhzhan@nuaa.edu.cn

  • 中图分类号: TG 457.11

Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing

  • 摘要: 采用电流恒定的快速电弧模式对316L不锈钢进行电弧增材制造.探索了构件的工艺成形性,并采用金相显微镜与场发射扫描电子显微镜对比研究了成形件不同区域微观组织与力学性能.结果表明,在单层熔覆层内,一次枝晶随着沉积方向从针状树枝晶,薄带状树枝晶向柱状树枝晶转变.同时,二次枝晶尺寸也随着沉积层堆积高度逐渐增大.在试样底部,中部与顶部的二次枝晶臂尺寸分别为11.54 μm,12.50 μm,15.52 μm,其尺寸随着热累积的增加而不断增大.此外,试样沿沉积方向与扫描方向的抗拉强度为517 MPa和527 MPa,均超过了锻材强度.试样断后伸长率为22.5%和15.0%.两种方向的拉伸试样断裂模式均为韧性断裂,但沿扫描方向制造的试样塑韧性优于沉积方向试样.
    Abstract: The 316L stainless steel component was manufactured by speed arc wire arc additive manufacturing(WAAM) under constant current. The formation of the component was explored, and the microstructure and mechanical properties at different regions of the component was compared under the scanning electron microscopes and the metallurgical microscope. The results indicate that the primary dendrites(PD) transform from acicular dendrites, strip dendrites to columnar dendrites along the deposition direction in single layer. The dimensions of secondary dendrites(SD) increases with the deposition height. The secondary dendrite arms sizes(SDAS) are 11.54, 12.50 μm and 15.52 μm at the bottom, middle and top of the sample, which are mainly affected by heat accumulation. In addition, the tensile strength of the sample along the deposition direction and scanning direction is 517 MPa and 527 MPa,exceeding the strength of forging. The percentage elongation after fracture of the sample is 22.5% and 15.0%. And the fracture mode of tensile samples is ductile fracture. However, the plasticity and the ductility of samples adopted along the scanning direction is better than that of the samples in the deposition direction.
  • 纤维石英增强的二氧化硅复合材料(SiO2f/SiO2)具备热稳定性好、介电常数低、透波性能好和强度高等优点,广泛应用在导弹、卫星和火箭上[1]. 在SiO2f/SiO2复合材料的应用过程中,经常涉及到与自身或者其它金属的焊接,而钎焊是一种最常用的连接方法[2]. 由于SiO2f/SiO2复合材料的表面能很低,普通钎料对SiO2f/SiO2复合材料表面的润湿性很差,通常通过在钎料中添加活性元素来提高润湿性,AgCuTi是钎焊复合材料常用的活性钎料[3],其中Ti元素由于活性高,能够与SiO2发生反应,降低界面能从而促进润湿[4]. Ti和SiO2的界面反应比较复杂.使用AgCuTi钎料钎焊SiO2材料时,界面结构为SiO2/TiSi2+Ti4O7[5]. 而使用AgCuInTi钎料钎焊SiO2f/SiO2复合材料时,界面结构为SiO2/TiO+TiSi2化合物[6].

    在AgCuTi钎料和SiO2f/SiO2复合材料界面均发现了Ti-O和Ti-Si化合物,但是真正与SiO2结合的是哪种化合物并不清楚. 活性元素Ti在什么条件下与O反应,在什么条件下与Si发生反应,界面的反应机制也不清楚. 使用第一性原理计算能够从原子和电子的尺度研究界面原子的结合和反应机理. 因此,文中使用第一性原理计算深入研究了Ti和SiO2的界面结合机制.

    使用第一性原理计算软件Materials Studio的CASTEP模块进行界面结合机理的研究,该软件基于密度泛函理论,采用赝势平面波方法进行计算. 经过收敛性测试,交换关联能采用GGA-PBE,截断能设置为340 eV,K点网格设置为3 × 6 × 1. 结构弛豫时,最大力、最大应力和最大位移的收敛阈值分别为0.5 eV/nm,0.1 GPa和 0.2e−3 nm.

    为了验证选择的计算参数能够满足计算精度要求,对Ti的晶格进行了几何优化,驰豫后Ti的晶格参数为a = b = 0.295 92 nm,c = 0.465 57 nm,与试验结果(a = b = 0.295 06 nm,c = 0.467 88 nm)和其它文献[7]中的计算结果均比较接近,证明了计算参数选择的合理性.

    对于Ti/SiO2界面,根据构建界面的最小错配度原则,建立了(3 × 1)Ti(10-10)/(31/2 × 1)SiO2(0001)界面模型,(3 × 1)Ti(10-10)层的晶格参数为:a = 0.467 88 nm,b = 0.885 18 nm,α = 90°,而 (31/2 × 1) SiO2 层的晶格参数为:a = 0.491 00 nm,b = 0.850 44 nm,α = 90°. 选用二者的平均数作为界面层的晶格参数. 对于构建好的界面模型,〈001〉方向上的错配度为2.35%,〈010〉方向上的错配度为1.96%. 根据表面能收敛性测试,建立了6层Ti(10 - 10)/16层SiO2 (0001)界面模型. 在z轴方向上加入了厚度为1.6 nm的真空层来分离两个表面层的自由表面.

    对于SiO2 (0001)表面,既有可能是O终止表面,也有可能是Si终止表面,因此,分别建立了O终止面界面(O-T)和Si终止面界面(Si-T)模型,如图1所示. 在O-T界面中,Si和O原子比为1∶2.4,是一种富O界面;在Si-T界面中,Si和O原子比为1∶1.67,是一种富Si界面. 同时,对于同一种终止面界面,建立了三种典型的对位模型:Ti原子位于O原子的正上方(top),Ti原子位于两个O原子的桥位的上方(bridge),Ti原子位于三个O原子的空位的上方(hollow),分别如图1c1d1e所示.

    图  1  Ti/SiO2界面结构侧视图和三种不同界面结构俯视图
    Figure  1.  Side view of Ti/SiO2 interfacial structure and three interface configurations. (a) O termination surface;(b) Si termination surface;(c) top;(d) bridge; (e) hollow

    使用分离功(work of separation, Wsep)来评价Ti/SiO2界面结合的强度. 通常,分离功定义为把一个界面可逆地分成两个自由表面所需的功,可以由式(1)计算得出[8],即

    $$ {W_{{\rm{sep}}}} = \left( {{E_{{\rm{Si}}{{\rm{O}}_2}}} + {E_{{\rm{Ti}}}} - {E_{{\rm{interface}}}}} \right)/{A_{{\rm{interface}}}} $$ (1)

    式中:$E_{\rm {SiO}_2}$ETi是单独的SiO2和Ti层的能量;Einterface是界面结构的总能量;Ainterface是界面的面积. 分离功可以用结合能关系(universal binding energy relation,UBER)[9]的方法进行计算,在UBER方法中,手动地将界面距离由一个很大的值逐渐调小,直至分离功达到最大然后变小,这样就可以得到最大的分离功和对应的平衡界面距离(d0). 然后,对分离功最大的界面结构进行驰豫,得到驰豫后的分离功.在驰豫过程中,仅对界面上下各三层原子进行驰豫,其余原子的位置保持固定不变.

    图2为不同Ti/SiO2界面结构的UBER曲线,曲线的峰值对应每种界面结构的最大分离功. 结果显示SiO2表面的终止面以及界面原子对位对界面结合强度均有影响. 总体来说,O终止面界面的分离功大于Si终止面界面的分离功,同时,相应的界面平衡距离也更短,表明界面形成的Ti-O键比Ti-Si键更强且键长更短. 对于O终止面界面,hollow对位界面的分离功最大为7.48 J/m2,界面平衡距离为0.12 nm. 而top和bridge对位界面的分离功分别为6.24 J/m2和7.07 J/m2. 对于Si终止面界面,不同的对位对界面分离功影响较小,top和bridge对位界面的UBER曲线基本重合,最大分离功为2.24 J/m2,界面平衡距离为0.20 nm,而hollow对位界面的分离功为1.97 J/m2.

    图  2  Ti/SiO2界面结构的UBER曲线
    Figure  2.  UBER curves for the Ti/SiO2 interface structure

    图3为驰豫后的Ti/SiO2界面结构侧视图,其中图3a为O终止面hollow对位界面驰豫以后的界面结构,驰豫后界面的分离功为8.99 J/m2,大于未驰豫的界面分离功. 在弛豫过程中,界面处的Ti原子和O原子逐渐向对方运动. 同时发现,次界面层的Ti原子也运动到界面与O成键,表明O对Ti有很强的的吸引力. 界面的Ti-O键长由驰豫前的0.238 2 nm缩短到0.201 2 ~ 0.206 3 nm,这已经与TiO2体相内Ti-O键长(0.197 3 nm)极为接近. 图3b为Si终止面hollow对位界面驰豫以后的界面结构,驰豫后界面的分离功为2.65 J/m2,同样也大于未弛豫的界面分离功. 弛豫后界面的Ti-Si键长0.246 7 ~ 0.253 1 nm,略大于驰豫前键长(0.242 3 ~ 0.247 3 nm). 而TiSi2化合物中的Ti-Si键长为0.274 1 nm.

    图  3  驰豫后的Ti/SiO2界面结构侧视图
    Figure  3.  Side view of relaxed Ti/SiO2 interfacial structure. (a) O termination surface; (b) Si termination surface

    原子间的键合强度决定了界面的力学性能,因此,进一步研究了Ti/SiO2界面的电子行为.

    图4为驰豫后界面的差分电荷密度图,其中图4a为O终止界面的差分电荷密度图,差分密度图是由整个界面的电子密度减去每个原子初始的电子密度得到的. 可以看出,界面处的O原子周围有电荷聚集区,而Ti原子周围有电荷大耗散区,表明O原子和Ti原子分别得到和失去电子,变为负离子和正离子,并通过静电引力形成离子键. 使用Mulliken布居数半定量地评价了电荷转移和离子性,结果显示Ti1和O1 原子的布居数分别为+0.24 和−0.91,界面Ti1-O1的键集居数为0.29,表明界面形成的Ti-O键主要是离子键. 图4b为Si终止面界面的差分电荷密度图,界面处的Ti2和Si2原子周围均有电荷的耗散区,说明两个原子均失去电子,两个原子间的区域有电荷的聚集区,说明电子归两个原子共有,键合有共价键的成分. Ti2和Si2原子的布居数分别为−0.27和+1.04,说明界面的Ti和Si原子之间也有电荷转移,键合有离子键的成分,Ti2-Si2键的键集居数为0.76,说明界面的Ti-Si键的离子键成分较小,共价键的成分较大.

    图  4  驰豫后界面的差分电荷密度图
    Figure  4.  Charge density difference for the interface after relaxation. (a) O termination surface; (b) Si termination surface

    图5为驰豫后界面特定原子的分态密度图(partial density of stats,PDOS),其中图5a为O终止界面的PDOS,可以发现Ti和O原子的态密度在−11.5 ~ +1.3 eV的能量范围内有明显的重叠,对应Ti-3d/O-2p电子的强烈杂化,表明原子之间的离子键结合. 同时,Ti的p和d轨道在−22.5 ~ −19.3 eV的能量范围出现了很小的峰,与O-s轨道电子态密度的峰在同一位置,这个位置的峰宽度较窄,表明电子局域化程度较高,界面的Ti-O键还有小部分共价键的成分. 图5b为Si终止面界面部分原子的态密度图,在−11 ~ +1 eV能量区域,Si和Ti有范围较大的峰的重合,表明之间的键合有离子键的成分. 在−3 ~ +1 eV能量范围内,有重合度很高,宽度很窄的峰,表明键合有共价键的成分,说明界面形成的Ti-Si键是共价-离子混合键.

    图  5  驰豫后界面特定原子的PDOS
    Figure  5.  PDOS projected on selected atoms of interface after relaxation. (a) O termination surface; (b) Si termination surface

    界面能(γ)可以用来评价特定条件下界面结构的热力学稳定性,界面能可以由下式计算得到[10]

    $$ \gamma = \dfrac{1}{{2A}}\left( {{G_{{\rm{slab}}}} - N_{\rm{O}}^{}\mu _{\rm{O}}^{} - N_{{\rm{Si}}}^{}\mu _{{\rm{Si}}}^{} - {N_{{\rm{Ti}}}}\mu _{{\rm{Ti}}}^{}} \right)= \dfrac{1}{{2A}}\left[ {{G_{{\rm{slab}}}} - \dfrac{1}{2}N_{\rm{O}}^{}\mu _{{\rm{Si}}{{\rm{O}}_2}}^0 - \left( {N_{{\rm{Si}}}^{} - \dfrac{1}{2}N_{\rm{O}}^{}} \right)\mu _{{\rm{Si}}}^{} - {N_{{\rm{Ti}}}}\mu^0 _{{\rm{Ti}}}} \right] $$ (2)

    式中:Gslab是界面的吉布斯自由能;Niμi分别是i(i = Si, O, Ti, SiO2)原子的数量和化学势.

    考虑到温度的影响,Si的化学势可以表示为

    $$\mu _{{\rm{Si}}}^{} = \mu _{{\rm{Si}}}^0 + kT\ln {a_{{\rm{Si}}}}$$ (3)

    式中:k是玻尔兹曼常数;T是温度;aSi是Si的活度. 因此,界面能可以进一步表示为

    $$\gamma = \frac{1}{{2A}}\Biggr[ {E_{{\rm{slab}}}} - \frac{1}{2}N_{\rm{O}}^{}\mu _{{\rm{Si}}{{\rm{O}}_2}}^0 - \left( {N_{{\rm{Si}}}^{} - \frac{1}{2}N_{\rm{O}}^{}} \right)\left( {\mu _{{\rm{Si}}}^0 + kT\ln {a_{{\rm{Si}}}}} \right) -{N_{{\rm{Ti}}}}\mu _{{\rm{Ti}}}^{\rm{0}} \Biggr]$$ (4)

    SiO2的表面既有可能是O终止面,也有可能是Si终止面. 根据之前的结算结果,如果O终止面界面稳定,界面会形成Ti-O化合物;如果Si终止面界面稳定,界面会形成Ti-Si化合物. 图6为Ti/SiO2界面在1 173 K时的不同界面结构的界面能. 对于富Si界面,界面能随着Si活度的下降而上升,而富O界面显示出相反的趋势. 当Si的活度大于e−35时,富Si界面稳定,Si的活度小于e−35时,富O界面稳定. 因此,在使用含Ti钎料钎焊SiO2时,界面处易形成Ti-O化合物,反应式如下

    图  6  1 173 K时Ti/SiO2的界面能
    Figure  6.  Interface energy of Ti/SiO2 at 1 173 K
    $$ {\rm{Ti}} + {\rm{Si}}{{\rm{O}}_2} \to {\rm{Ti}} {\text{-}} {\rm{O}} + {\rm{Si}} $$ (5)

    SiO2中的Si就被Ti置换出来. Si扩散进入钎料后,活度升高,与钎料中的Ti反应生成Ti-Si化合物,即

    $$ {\rm{Ti}} + {\rm{Si}} \to {\rm{Ti}} {\text{-}} {\rm{Si}} $$ (6)

    界面应该为SiO2/Ti-O化合物/Ti-Si化合物/钎料.

    (1)建立了错配度很小的Ti(10-10)/SiO2(0001)界面模型,分别考虑了不同的终止面和原子对位. 结果发现,O终止面界面的分离功大于Si终止面界面的分离功,同时,相应的界面平衡距离也更短,对于O终止面界面,驰豫后分离功最大为8.99 J/m2,Si终止面界面为2.65 J/m2.

    (2)使用差分电荷密度、Mulliken布局数和态密度研究了界面电子行为,发现在O终止面界面,Ti和O原子之间形成很强的离子-共价键;而在Si终止面界面,Ti和Si之间形成的键合主要是共价键,也有部分离子键的成分.

    (3)在钎焊温度1 173 K下,当Si的活度大于e−35时,富Si界面稳定,Si的活度小于e−35时,富O界面稳定. 在使用含Ti钎料钎焊SiO2f/SiO2复合材料时,界面处易形成Ti-O化合物. SiO2中的Si被Ti置换出来. Si扩散进入钎料后,活度升高,与钎料中的Ti反应生成Ti-Si化合物,所以界面应该为SiO2/Ti-O化合物/Ti-Si化合物/钎料.

  • 图  1   电弧增材制造示意图

    Figure  1.   Schematic diagram of WAAM

    图  2   拉伸试样尺寸(mm)

    Figure  2.   Dimensions of the tensile specimen

    图  3   快速电弧模式下的电流与电压关系

    Figure  3.   Relationship between current and voltage in fast arc mode. (a) change of current and voltage with time; (b) change of current with voltage

    图  4   单道熔覆层内不同区域微观组织

    Figure  4.   Microstructure of different areas in single cladding layer. (a) single pass cladding layer; (b) dendrite of top region; (c) dendrite of middle region; (d) dendrite of bottom region; (e) secondary dendrite of top region; (f) secondary dendrite of middle region; (g) secondary dendrite of bottom region

    图  5   样品不同区域二次枝晶形貌

    Figure  5.   Morphologies of secondary dendrite arms in different regions of the sample. (a) top of sample; (b) middle of sample; (c) bottom of sample

    图  6   样品不同区域二次枝晶臂尺寸分布

    Figure  6.   Dimensions distribution of secondary dendrite arms in different regions of the sample. (a) top of sample; (b) middle of sample; (c) bottom of sample; (d) average value of different regions

    图  7   沿不同方向拉伸试样的拉伸结果

    Figure  7.   Tensile results of tensile specimens along different directions. (a) scanning direction; (b) deposition direction

    图  8   不同方向拉伸试样断口扫描结果

    Figure  8.   Scanning results of fracture of tensile specimens in different directions. (a) scanning direction; (b) deposition direction; (c) fracture center along scanning direction; (d) fracture center along deposition direction

    表  1   316L不锈钢的化学成分(质量分数,%)

    Table  1   Chemical compositions of 316L stainless steel

    Cr Ni Mo Mn Si Fe
    17.09 10.61 2.38 1.17 0.59 余量
    下载: 导出CSV

    表  2   电弧增材制造过程工艺参数

    Table  2   Process parameters of wire arc additive manufacturing(WAAM)

    平均电压
    U/V
    平均电流
    I/A
    电弧功率
    P/W
    扫描速度
    v1 /(mm·s−1)
    送丝速度
    v2 /(m·min−1)
    气体流量
    Q /(L·min−1)
    19.2 174 3 341 10 5 24
    下载: 导出CSV

    表  3   不同方向下样品的拉伸性能

    Table  3   Tensile properties of specimens in different directions

    试样
    方向
    试样
    编号
    抗拉强度
    Rm /MPa
    断后伸长率
    A(%)
    平均抗拉强度
    R/MPa
    扫描
    方向
    1 542 23.5 527
    2 516 23.0
    3 523 21.0
    沉积
    方向
    1 509 14.0 517
    2 538 15.0
    3 504 16.0
    下载: 导出CSV
  • [1]

    Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020

    [2] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151,159.

    Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing technology of complex structure and high performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151,159.

    [3]

    Rodringues T A, DuarteV, MirandaR M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121 − 1132. doi: 10.3390/ma12071121

    [4]

    Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012

    [5]

    Chaurasia M, Sinha M K. Investigations on process parameters of wire arc additive manufacturing (WAAM): A review [M]. Advances in Manufacturing and Industrial Engineering, 2021, 86: 845 − 853.

    [6]

    Ventudini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22: 643 − 657. doi: 10.1016/j.addma.2018.06.013

    [7]

    Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire plus arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226: 99 − 105. doi: 10.1016/j.jmatprotec.2015.07.005

    [8]

    He T, Yu S, Shi Y, et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4773 − 4782. doi: 10.1007/s00170-019-04558-5

    [9]

    Yuan L, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 454 − 464. doi: 10.1109/TII.2019.2935233

    [10]

    Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5

    [11]

    Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications[J]. Materials Letters, 2021, 299: 112 − 116.

    [12] 陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49.

    Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Effect of arc power on microstructure and mechanical properties of 316L austenitic stainless steel fabricated by MIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49.

    [13]

    Zhang X Y, Wang K H, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel[J]. Materials Today Communications, 2021, 27: 62 − 70.

    [14]

    Tanvir A N M, Ahsan M R U, Seo G, et al. Phase stability and mechanical properties of wire plus arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67: 80 − 94.

    [15]

    Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262: 577 − 584. doi: 10.1016/j.jmatprotec.2018.07.030

    [16]

    Derekar K S, Addison A, Joshi S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 311 − 331. doi: 10.1007/s00170-020-04946-2

    [17]

    Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science & Engineering: A, 2020, 776: 53 − 64.

    [18]

    Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing[J]. Surface and Coatings Technology, 2019, 374: 116 − 123. doi: 10.1016/j.surfcoat.2019.05.079

    [19]

    Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004

    [20]

    Yi H-J, Kim J-W, Kim Y-L, et al. Effects of cooling rate on the microstructure and tensile properties of wire-arc additive manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(8): 1235 − 1246. doi: 10.1007/s12540-019-00563-1

    [21]

    Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy[J]. Science and Technology of Welding & Joining, 2016, 22(6): 472 − 483.

    [22] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19.

    Liu Liming, He Yajing, Li Zongyu, et al. Microstructure and properties of 316 stainless steel fabricated by wire arc additive manufacturing under different paths [J]. Transactions of the China Welding institution, 2020, 41 (12): 13 − 19.

    [23]

    Lockett H, Ding J, Williams S, et al. Design for wire plus Arc Additive Manufacture: design rules and build orientation selection [J]. Journal of Engineering Design, 2017, 28(7-9): 568 − 598.

    [24]

    Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3813 − 3830. doi: 10.1007/s00170-019-03706-1

    [25]

    Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275. doi: 10.3390/app7030275

    [26]

    Gu J L, Yang S L, Gao M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34: 135 − 148.

    [27]

    Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. Journal of Materials Processing Technology, 2021, 288: 116895. doi: 10.1016/j.jmatprotec.2020.116895

    [28]

    Zhong Y, Zheng Z Z, Li J J, et al. Fabrication of 316L nuclear nozzles on the main pipeline with large curvature by CMT wire arc additive manufacturing and self-developed slicing algorithm[J]. Materials Science & Engineering: A, 2021, 820: 262 − 276.

    [29]

    Chen J, Wei H, Zhang X, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing[J]. Materials & Design, 2021, 198(2): 109325.

    [30]

    Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226 − 235. doi: 10.1016/j.actamat.2016.03.019

    [31]

    Duarte V R, Rodrigues T A, Schell N, et al. Hot forging wire and arc additive manufacturing (HF-WAAM)[J]. Additive Manufacturing, 2020, 35: 135 − 146.

    [32]

    Liu W Q, Jia C B, Guo M, et al. Compulsively constricted WAAM with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003

    [33]

    Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering: A, 2019, 751: 183 − 190. doi: 10.1016/j.msea.2019.02.078

    [34]

    Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering:A, 2016, 676: 395 − 405.

    [35]

    Wu B, Pan Z, Ding D, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160.

    [36]

    Pramod R, Kumar S M, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28(1): 307 − 321. doi: 10.1007/s12540-021-01026-2

  • 期刊类型引用(1)

    1. 陆益敏,马丽芳,王海,奚琳,徐曼曼,杨春来. 脉冲激光沉积技术生长铜材碳基保护膜. 材料研究学报. 2023(09): 706-712 . 百度学术

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  56
  • PDF下载量:  55
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回