高级检索

快速电弧模式增材制造316L不锈钢组织与性能

王强, 王磊磊, 高转妮, 杨兴运, 占小红

王强, 王磊磊, 高转妮, 杨兴运, 占小红. 快速电弧模式增材制造316L不锈钢组织与性能[J]. 焊接学报, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
引用本文: 王强, 王磊磊, 高转妮, 杨兴运, 占小红. 快速电弧模式增材制造316L不锈钢组织与性能[J]. 焊接学报, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001
Citation: WANG Qiang, WANG Leilei, GAO Zhuanni, YANG Xingyun, ZHAN Xiaohong. Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 86-93. DOI: 10.12073/j.hjxb.20220524001

快速电弧模式增材制造316L不锈钢组织与性能

基金项目: 江苏省自然科学基金资助项目(BK20200431);国防基础科研计划资助项目(JCKY2020605C006)
详细信息
    作者简介:

    王强,硕士;主要研究方向为金属的电弧增材制造与激光熔化沉积制造; Email: qiang_wang0818@163.com

    通讯作者:

    占小红,博士,教授;Email: xhzhan@nuaa.edu.cn

  • 中图分类号: TG 457.11

Microstructure and properties of 316L stainless steel fabricated by speed arc wire arc additive manufacturing

  • 摘要: 采用电流恒定的快速电弧模式对316L不锈钢进行电弧增材制造.探索了构件的工艺成形性,并采用金相显微镜与场发射扫描电子显微镜对比研究了成形件不同区域微观组织与力学性能.结果表明,在单层熔覆层内,一次枝晶随着沉积方向从针状树枝晶,薄带状树枝晶向柱状树枝晶转变.同时,二次枝晶尺寸也随着沉积层堆积高度逐渐增大.在试样底部,中部与顶部的二次枝晶臂尺寸分别为11.54 μm,12.50 μm,15.52 μm,其尺寸随着热累积的增加而不断增大.此外,试样沿沉积方向与扫描方向的抗拉强度为517 MPa和527 MPa,均超过了锻材强度.试样断后伸长率为22.5%和15.0%.两种方向的拉伸试样断裂模式均为韧性断裂,但沿扫描方向制造的试样塑韧性优于沉积方向试样.
    Abstract: The 316L stainless steel component was manufactured by speed arc wire arc additive manufacturing(WAAM) under constant current. The formation of the component was explored, and the microstructure and mechanical properties at different regions of the component was compared under the scanning electron microscopes and the metallurgical microscope. The results indicate that the primary dendrites(PD) transform from acicular dendrites, strip dendrites to columnar dendrites along the deposition direction in single layer. The dimensions of secondary dendrites(SD) increases with the deposition height. The secondary dendrite arms sizes(SDAS) are 11.54, 12.50 μm and 15.52 μm at the bottom, middle and top of the sample, which are mainly affected by heat accumulation. In addition, the tensile strength of the sample along the deposition direction and scanning direction is 517 MPa and 527 MPa,exceeding the strength of forging. The percentage elongation after fracture of the sample is 22.5% and 15.0%. And the fracture mode of tensile samples is ductile fracture. However, the plasticity and the ductility of samples adopted along the scanning direction is better than that of the samples in the deposition direction.
  • 紫铜因其优异的导电性、导热性和隔磁性,被广泛应用于变压器和热交换器等领域. 但由于紫铜的强度较低,故无法将其作为支撑构件直接使用[1-2]. 因此,工程上常把紫铜与不锈钢通过焊接的方法制备成铜/钢复合结构进行使用,从而充分发挥两种材料的优势,以延长零件的使用寿命,提高综合经济效益[3-5].

    由于铜和不锈钢的熔点、热导率和线膨胀系数差异较大,使得铜/钢焊接接头极易出现缺陷,导致接头性能恶化[6]. 目前,采用各类焊接方法成功实现铜/钢焊接的研究均有报道[7-10]. Singh等人[11]采用钨极氩弧焊技术连接了铜与304不锈钢,并对焊接接头的力学性能进行评估. 结果表明,当钨极偏移至铜侧1.25 mm时,焊接接头的抗拉强度最高(194 MPa),可达到铜母材强度的83.26%,试样断裂于铜侧热影响区. 该研究中未对焊缝韧性进行考察. 彭迟等人[12]采用等离子弧焊对紫铜和304不锈钢异种材料进行焊接,结果表明,焊接接头形成过程中铜元素的迁移和扩散主要依靠钢液的流动,焊缝主要组织为α,γ富铁相和ε富铜相,焊接接头的抗拉强度达到了174 MPa. Ding等人[13]研究电子束焊工艺条件下T2铜和45钢焊接接头的强度与韧性,结果表明,焊缝中的气孔和微裂纹将加剧焊接接头力学性能恶化,焊接接头的抗拉强度约为94 MPa,断裂韧性为6.027 MPa·m1/2,低于铜母材(8 ~ 10 MPa·m1/2). 目前,关于铜/钢异种材料焊接接头性能研究大多数停留在焊接方法及工艺改进方面,对于填充材料改善接头性能研究方面的报道相对较少.

    从工程应用的角度出发,采用熔化极气体保护焊(gas metal arc welding,GMAW)对T2紫铜和304不锈钢进行异种材料焊接,在现有填充材料(HS201)的基础上,成功研制出了两组药芯焊丝(Cu-Si和Cu-Ni),并研究了Si,Ni元素对焊接接头连接机理及力学性能(强度、韧性和硬度)的影响,从而为提高铜/钢异种材料焊接接头的性能提供参考依据.

    试验材料选用304不锈钢和T2紫铜,其规格为150 mm × 100 mm × 5 mm,紫铜板单边开斜45°坡口. 填充材料分别选用ϕ1.2 mm的商用紫铜焊丝(HS201)和Cu-Si,Cu-Ni型药芯焊丝,其中主要组元Si和Ni元素可以细化焊缝晶粒、提高焊缝的抗渗透裂纹能力[2, 14]. 母材和焊丝熔敷金属的化学成分及力学性能见表1表2.

    表  1  母材和焊丝熔敷金属的化学成分(质量分数,%)
    Table  1.  Chemical compositions of base metal and deposited metals
    材料SiMnNiCrSnFeCu
    304不锈钢 ≤ 1.00 ≤ 2.00 8.0 ~ 10.5 18 ~ 20 余量
    T2紫铜 ≤ 0.001 ≤ 0.001 ≤ 0.002 ≤ 0.005 ≥ 99.95
    HS201 ≤ 0.5 ≤ 0.5 ≤ 1.0 ≥ 98.0
    Cu-Si ≤ 20 ≤ 0.001 ≤ 0.002 ≤ 0.005 ≥ 80.0
    Cu-Ni ≤ 0.001 ≤ 0.001 ≤ 30 ≤ 0.002 ≤ 0.005 ≥ 70.0
    下载: 导出CSV 
    | 显示表格
    表  2  母材和焊丝熔敷金属的力学性能
    Table  2.  Mechanical properties of base metal and deposited metals
    材料抗拉强度Rm/MPa冲击吸收能量
    (室温)AKV/J
    显微维氏硬度H(HV0.1)
    304不锈钢≥ 520≤ 210
    T2紫铜215 ~ 275≥ 3460 ~ 90
    HS201≥ 22090 ~ 105
    下载: 导出CSV 
    | 显示表格

    试验采用GMAW方法进行施焊,焊接设备为YD-500GL焊机和TAWERS焊接机器人,焊接过程如图1所示. 焊接前,将待焊铜板放入STM-36-14型恒温箱式电阻炉中进行预热,预热温度为500 ℃,保温10 min. 然后将铜板进行打磨,以去除其表面氧化物. 另外,为了防止焊接时变形,需要将待焊试板进行固定,并保持板间隙在1 ~ 2 mm左右. 焊接过程中采用体积分数为99.99%的Ar气作为保护气体,其具体的焊接工艺参数见表3.

    图  1  焊接成形示意图(mm)
    Figure  1.  Schematic diagram of welding forming
    表  3  焊接工艺参数
    Table  3.  Welding process parameters
    焊丝类型焊道电弧电压
    U/V
    焊接电流
    I/A
    焊接速度
    v/(mm·s−1)
    保护气体流量
    Q/(L·min−1)
    HS201第一道25.5 ~ 25.7235 ~ 2445.0015
    第二道25.1 ~ 25.6218 ~ 2284.2015
    Cu-Si第一道25.3 ~ 25.7224 ~ 2334.8315
    第二道25.1 ~ 25.4220 ~ 2303.8715
    Cu-Ni第一道25.4 ~ 25.8230 ~ 2424.0515
    第二道25.4 ~ 25.8215 ~ 2263.5415
    下载: 导出CSV 
    | 显示表格

    焊后,首先利用线切割机在焊接试板上截取20 mm × 10 mm × 5 mm的金相试样,接着在240 ~ 3000号SiC砂纸上进行预磨,然后在抛光机上进行粗抛和精抛,最后使用腐蚀液(25 g FeCl3 + 25 mL HCl + 100 mL H2O)对金相试样腐蚀. 使用B-500MET型光学显微镜对腐蚀后的试样进行金相组织观察.使用带有能谱分析(energy dispersive spectrum,EDS)的VEGA3 XMU型扫描电子显微镜对显微组织进行相成分、相分布及元素扩散行为分析. 使用HVS-1000A型维氏硬度计进行硬度测试,施加载荷0.98 N. 使用JB-300B型试验机进行室温(20 ℃)冲击试验,并使用扫描电镜进行断口形貌观察. 冲击试样和拉伸试样的尺寸,如图2所示,使用HT-2402型万能试验机进行拉伸试验,加载速率为2 mm/min,试样制备符合GB/T 2651—2008《焊接接头拉伸试验方法》,试样厚度为2 mm.

    图  2  冲击试样和拉伸试样尺寸(mm)
    Figure  2.  Sample dimension of impact test and tensile test. (a) impact specimen; (b) tensile specimen

    图3为HS201,Cu-Si和Cu-Ni焊接接头的宏观形貌. 由图3可以看出,3组焊接接头成形良好,截面均未出现宏观缺陷,故文中研制开发的两组Cu-Si和Cu-Ni药芯焊丝可实现铜与不锈钢的连接. 图3a中HS201焊缝的颜色与铜母材一致,这是由于两者成分相似的缘故. 图3b中Cu-Si焊缝内的晶粒呈条片状分布,这与铜的外延生长现象有关. 因为Si元素的存在提高了液态熔池金属对铜的润湿性,使得液态熔池金属在冷却时易附着于铜侧形核,导致焊缝晶粒垂直于铜侧界面生长. 图3c中Cu-Ni焊缝的颜色呈铁青色,这是由于Ni元素的引入,使得从钢侧向焊缝中扩散的铁原子的数量明显增加,提高了焊缝中富铁相的含量,从而改变了焊缝组织的形貌及颜色.

    图  3  焊接接头的宏观形貌
    Figure  3.  Macroscopic morphology of the joints. (a) HS201; (b) Cu-Si; (c) Cu-Ni

    图4为采用HS201焊丝获得的铜/不锈钢焊接接头的显微组织. 由图4a可以看出,不锈钢与焊缝界面处存在明显的熔化未混合区域(melting unmixed zone,MUZ),并且该区域中有大量形状不一的富铜相颗粒弥散分布在铁基体上. 而焊缝中心由于凝固时发生的液相分离现象,焊缝组织由富铜相基体与颗粒状的富铁相组成. 图4b为铜母材与焊缝界面处的显微组织,由于铜的热导率较高,使得热影响区的晶粒在焊接热作用下显著长大.

    图  4  HS201焊接接头的显微组织
    Figure  4.  Microstructure of HS201 welded joint. (a) interface between stainless steel and weld; (b) interface between copper and weld

    图5为Cu-Si和Cu-Ni焊接接头的显微组织,其中图5a5c为采用Cu-Si药芯焊丝获得的铜/不锈钢焊接接头的显微组织. 图5a中不锈钢与Cu-Si焊缝界面处的组织分布与图4a相似,同样存在MUZ过渡带. 图5b为Cu-Si焊缝中心处的微观组织,与HS201焊缝相比,颗粒状的富铁相尺寸发生了明显的减小. 可以解释为:Si元素可以降低Cu与Fe之间的液相混合焓,进而造成熔池金属凝固过程中Cu和Fe两者的互扩散行为及溶解度发生了变化,熔池中的形核质点数量随之增加. 图5c中铜母材与焊缝界面处的显微组织与图4b相比,只是在近铜侧焊缝处的富铁相颗粒发生了细化. 图5d ~ 5f为采用Cu-Ni药芯焊丝获得的铜/不锈钢焊接接头的显微组织. 由于Ni元素的含量较高,焊缝中富铁相的数量和形貌均发生了显著的变化. 图5d为不锈钢与Cu-Ni焊缝界面处的显微组织,未出现MUZ过渡带,界面轮廓清晰. 这是因为Ni与Fe元素在液相下可以无限互溶,使得熔融状态下的母材与熔池金属发生充分混合. 分布在不锈钢近焊缝侧的富铁相垂直于界面生长,为典型的外延生长模式,同时又由于熔池金属凝固时发生溶质再分配过程,使得不锈钢侧界面处溶质浓度发生变化,成分过冷程度沿界面向焊缝中依次增大,最终使得富铁相从平面晶转变为树枝晶. 图5e为焊缝中心的显微组织,焊缝中心处的富铁相主要以柱状树枝晶的形式存在,这些柱状树枝晶结构在焊缝金属凝固过程中具有较强的抗热裂纹能力. 图5f为铜母材与Cu-Ni焊缝界面的显微组织,相比不锈钢侧焊缝及焊缝中心部位,铜侧焊缝中富铁相颗粒的尺寸显著减小,这与铁的扩散距离有关,即:随着位置远离不锈钢,扩散过来的铁含量越来越低,导致析出的富铁相尺寸减小.

    图  5  Cu-Si和Cu-Ni焊接接头的显微组织
    Figure  5.  Microstructure of Cu-Si and Cu-Ni welded joints. (a) interface between stainless steel and Cu-Si weld; (b) Cu-Si weld center; (c) interface between copper and Cu-Si weld; (d) interface between stainless steel and Cu-Ni weld; (e) Cu-Ni weld center; (f) interface between copper and Cu-Ni weld

    Cu-Ni焊接接头中Ni元素的存在完全改变了原有焊接接头(HS201和Cu-Si)的界面结合形式. 为了更好地分析出界面处的连接行为,故对Cu-Ni焊接接头进行了扫描电镜观察,如图6所示. 图6a为304不锈钢与Cu-Ni焊缝的结合界面,可以看出界面连接良好,未出现焊接缺陷. 图6b图6c为焊缝中心的富铁相形貌,可以看出,焊缝中不仅存在树枝状的富铁相,还存在大量球状的富铁相. 结合表4所示的EDS结果可知,焊缝中的基体相仍以Cu元素为主,即A,D点Cu元素含量的质量分数分别为79.66%,83.34%. 而析出物中的主要元素为Fe,即B,C,E,F点中Fe元素含量的质量分数分别为61.12%,57.15%,56.52%,56.62%. 此外,将A,D点与B,C,E,F点的Ni元素含量进行对比可发现,富铁相中Ni元素的含量高于富铜相中的Ni元素含量.

    图  6  Cu-Ni焊接接头的SEM组织
    Figure  6.  SEM microstructure of Cu-Ni welded joint. (a) interface between stainless steel and weld; (b) dendritic rich-Fe phase in weld; (c) globular rich-Fe phase in weld
    表  4  图6中A ~ F点的化学成分(质量分数,%)
    Table  4.  Chemical compositions of spots marked as A ~ F in Fig.6
    位置FeCuNi
    A 6.98 79.66 13.36
    B 61.12 14.85 24.03
    C 57.15 16.47 26.37
    D 6.57 83.34 10.09
    E 56.52 21.48 21.99
    F 56.62 22.00 21.38
    下载: 导出CSV 
    | 显示表格

    图7图6a中的线扫描能谱结果,可以看出,在不锈钢与焊缝的界面处,Fe,Ni和Cu元素间发生了相互扩散,且扩散至钢侧的Ni含量高于Cu含量. 因此,这在一定程度上降低了Cu向钢侧的渗透趋势,避免了渗透裂纹的出现,从而提高了界面结合强度[2].

    图  7  图6a中的线扫能谱结果
    Figure  7.  Line scan energy spectrum results in Fig.6a

    为了评价HS201,Cu-Si和Cu-Ni焊丝作为填充材料得到的接头强度,对3组焊接接头进行了拉伸试验测试,测试结果如图8所示. 从图8a可以看出,与HS201焊丝获得的焊接接头相比,Cu-Si和Cu-Ni药芯焊丝作为填充材料得到的焊接接头强度均有所提升,但提升幅度不大. 图8b为焊接接头的断裂位置,3组焊接接头均断裂于铜侧热影响区,这也解释了三者之间的抗拉强度差异较小的原因. 由于铜的热导率较高,导致其热影响区晶粒在焊接过程中极易发生粗化倾向,造成该部位的强度较为薄弱,从而容易在该位置发生断裂.

    图  8  焊接接头的拉伸性能
    Figure  8.  Tensile properties of welded joints. (a) stress-strain curve; (b) fracture position of tensile sample

    图9为采用HS201,Cu-Si和Cu-Ni焊丝作为填充材料得到的焊缝室温(20 ℃)冲击试验结果. 由图9可知,Cu-Si焊缝的冲击吸收能量为41 J,相比HS201接头提高了17%. 结合显微组织分析可知,Si元素的引入使得焊缝金属的富铁相得到了细化,这些弥散分布于铜基体上的富铁相对焊缝金属起到了强化作用. Cu-Ni焊缝的冲击吸收能量为54 J,相比HS201提高了54%,且达到了铜母材冲击吸收能量的83%.

    图  9  母材与焊缝的冲击性能
    Figure  9.  Impact energy of the base metal and weld

    为了进一步评价这3组焊接接头的冲击韧性差异,采用扫描电镜对冲击试样断口形貌进行了观察,其断口形貌如图10所示. 对于Cu-Si焊接接头而言(图10b),其断面平整,无明显的缺陷,而且断口主要由大量的等轴韧窝组成,为典型的韧性断裂特征. 另外,将其与HS201焊接接头的断口形貌(图10a)对比可以发现,Cu-Si焊缝断口处的韧窝尺寸较大,这种微观差异与两者的冲击吸收能量呈正相关性. 对于Cu-Ni焊接接头而言(图10c),其断口处分布着尺寸更大且更深的韧窝,说明材料在断裂过程中能够吸收更多的能量,从而使得Cu-Ni焊接接头的冲击韧性最高,此结论与冲击试验得到的结果相符. 这种现象产生的主要原因是Ni能够显著稳定奥氏体和扩大奥氏体相区,并且降低焊缝中铁素体组织形成的倾向,因此,它能在一定程度上改善了焊缝的韧性[15].

    图  10  冲击试样的断口形貌
    Figure  10.  Fracture morphology of the impact specimen. (a) HS201; (b) Cu-Si; (c) Cu-Ni

    为了分析焊接接头的硬度分布情况,采用选区采集数据、汇总编排、绘制云图的方法对焊接接头横截面的显微维氏硬度进行了表征,其硬度云图如图11所示. 图11a为Cu-Si焊接接头的显微维氏硬度分布云图,可以看出不锈钢母材的显微维氏硬度值最高,铜侧热影响区的显微维氏硬度值最低,两处显微维氏硬度均值为185 HV0.1和85 HV0.1. 在焊缝区中,大部分区域的平均显微维氏硬度约为115 HV0.1,而部分区域的平均显微维氏硬度可达125 HV0.1,焊缝区的硬度分布不均匀. 结合微观组织分析可进一步确定,显微维氏硬度值较高的区域为富铁相析出物,显微维氏硬度值较低的区域为富铜相基体. 此外,将焊缝区中富铜基体的硬度与铜母材硬度对比可发现,富铜基体的硬度显著地高于铜母材硬度. 这主要是因为富铜基体上的富铁相对基体组织起到了第二相强化作用,使得富铜基体抵抗外力变形的能力大大提高. 图11b为Cu-Ni焊接接头的显微维氏硬度分布云图. 可以看出除了焊缝区外,其余区域的显微维氏硬度分布趋势与Cu-Si焊接接头相似. 在整个Cu-Ni焊缝区,显微维氏硬度值较高(140 HV0.1)的区域占比较大. 这主要是因为Ni元素的存在,使得进入熔池的Fe元素增加,在凝固过程中绝大部分Fe元素以树枝状的富铁相析出并分布于富铜基体的表面,而树枝状的富铁相相较于球状的富铁相具有更大的表面积,故在Cu-Ni接头的焊缝区中,显微维氏硬度值较高的区域占比最大.

    图  11  焊接接头的显微维氏硬度分布
    Figure  11.  Vickers microhardness distribution of the welded joints. (a) Cu-Si welded joint; (b) Cu-Ni welded joint

    (1) 采用HS201,Cu-Si和Cu-Ni焊丝得到的焊缝成形良好,且焊接接头表面无明显的宏观缺陷,故研制开发的Cu-Si和Cu-Ni药芯焊丝可实现铜与不锈钢的连接.

    (2) 在HS201,Cu-Si焊接接头钢与焊缝的交界处均发现了MUZ,且该区域组织是由富铁相的基体和富铜相组成. Cu-Ni焊接接头中由于Ni与Fe元素在富铁相下可以无限互溶,故在钢与焊缝的交界处未观察到MUZ. 在该焊缝中,富铁相多以树枝晶的形式存在,且富铁相中Ni含量高于富铜相.

    (3) 3组焊接接头的力学性能分析表明,添加Si,Ni元素可以显著提高焊缝金属的韧性,其中Ni元素所产生的影响最大. 在Cu-Si焊缝中,富铜相基体的硬度显著提高,而在Cu-Ni焊缝中,以富铁相为代表的高硬度区域占比最大.

  • 图  1   电弧增材制造示意图

    Figure  1.   Schematic diagram of WAAM

    图  2   拉伸试样尺寸(mm)

    Figure  2.   Dimensions of the tensile specimen

    图  3   快速电弧模式下的电流与电压关系

    Figure  3.   Relationship between current and voltage in fast arc mode. (a) change of current and voltage with time; (b) change of current with voltage

    图  4   单道熔覆层内不同区域微观组织

    Figure  4.   Microstructure of different areas in single cladding layer. (a) single pass cladding layer; (b) dendrite of top region; (c) dendrite of middle region; (d) dendrite of bottom region; (e) secondary dendrite of top region; (f) secondary dendrite of middle region; (g) secondary dendrite of bottom region

    图  5   样品不同区域二次枝晶形貌

    Figure  5.   Morphologies of secondary dendrite arms in different regions of the sample. (a) top of sample; (b) middle of sample; (c) bottom of sample

    图  6   样品不同区域二次枝晶臂尺寸分布

    Figure  6.   Dimensions distribution of secondary dendrite arms in different regions of the sample. (a) top of sample; (b) middle of sample; (c) bottom of sample; (d) average value of different regions

    图  7   沿不同方向拉伸试样的拉伸结果

    Figure  7.   Tensile results of tensile specimens along different directions. (a) scanning direction; (b) deposition direction

    图  8   不同方向拉伸试样断口扫描结果

    Figure  8.   Scanning results of fracture of tensile specimens in different directions. (a) scanning direction; (b) deposition direction; (c) fracture center along scanning direction; (d) fracture center along deposition direction

    表  1   316L不锈钢的化学成分(质量分数,%)

    Table  1   Chemical compositions of 316L stainless steel

    Cr Ni Mo Mn Si Fe
    17.09 10.61 2.38 1.17 0.59 余量
    下载: 导出CSV

    表  2   电弧增材制造过程工艺参数

    Table  2   Process parameters of wire arc additive manufacturing(WAAM)

    平均电压
    U/V
    平均电流
    I/A
    电弧功率
    P/W
    扫描速度
    v1 /(mm·s−1)
    送丝速度
    v2 /(m·min−1)
    气体流量
    Q /(L·min−1)
    19.2 174 3 341 10 5 24
    下载: 导出CSV

    表  3   不同方向下样品的拉伸性能

    Table  3   Tensile properties of specimens in different directions

    试样
    方向
    试样
    编号
    抗拉强度
    Rm /MPa
    断后伸长率
    A(%)
    平均抗拉强度
    R/MPa
    扫描
    方向
    1 542 23.5 527
    2 516 23.0
    3 523 21.0
    沉积
    方向
    1 509 14.0 517
    2 538 15.0
    3 504 16.0
    下载: 导出CSV
  • [1]

    Cunningham C R, Flynn J M, Shokrani A, et al. Invited review article: Strategies and processes for high quality wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 22: 672 − 686. doi: 10.1016/j.addma.2018.06.020

    [2] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151,159.

    Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing technology of complex structure and high performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151,159.

    [3]

    Rodringues T A, DuarteV, MirandaR M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121 − 1132. doi: 10.3390/ma12071121

    [4]

    Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8): 895 − 916. doi: 10.1080/02670836.2018.1455012

    [5]

    Chaurasia M, Sinha M K. Investigations on process parameters of wire arc additive manufacturing (WAAM): A review [M]. Advances in Manufacturing and Industrial Engineering, 2021, 86: 845 − 853.

    [6]

    Ventudini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22: 643 − 657. doi: 10.1016/j.addma.2018.06.013

    [7]

    Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire plus arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226: 99 − 105. doi: 10.1016/j.jmatprotec.2015.07.005

    [8]

    He T, Yu S, Shi Y, et al. High-accuracy and high-performance WAAM propeller manufacture by cylindrical surface slicing method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4773 − 4782. doi: 10.1007/s00170-019-04558-5

    [9]

    Yuan L, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 454 − 464. doi: 10.1109/TII.2019.2935233

    [10]

    Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5

    [11]

    Vishnukumar M, Pramod R, Kannan A R. Wire arc additive manufacturing for repairing aluminium structures in marine applications[J]. Materials Letters, 2021, 299: 112 − 116.

    [12] 陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49.

    Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Effect of arc power on microstructure and mechanical properties of 316L austenitic stainless steel fabricated by MIG wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49.

    [13]

    Zhang X Y, Wang K H, Zhou Q, et al. System study of the formability, nitrogen behaviour and microstructure features of the CMT wire and arc additively manufactured high nitrogen Cr-Mn stainless steel[J]. Materials Today Communications, 2021, 27: 62 − 70.

    [14]

    Tanvir A N M, Ahsan M R U, Seo G, et al. Phase stability and mechanical properties of wire plus arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67: 80 − 94.

    [15]

    Ryan E M, Sabin T J, Watts J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262: 577 − 584. doi: 10.1016/j.jmatprotec.2018.07.030

    [16]

    Derekar K S, Addison A, Joshi S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 311 − 331. doi: 10.1007/s00170-020-04946-2

    [17]

    Van D, Dinda G P, Park J, et al. Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing[J]. Materials Science & Engineering: A, 2020, 776: 53 − 64.

    [18]

    Yangfan W, Xizhang C, Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing[J]. Surface and Coatings Technology, 2019, 374: 116 − 123. doi: 10.1016/j.surfcoat.2019.05.079

    [19]

    Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004

    [20]

    Yi H-J, Kim J-W, Kim Y-L, et al. Effects of cooling rate on the microstructure and tensile properties of wire-arc additive manufactured Ti-6Al-4V alloy[J]. Metals and Materials International, 2020, 26(8): 1235 − 1246. doi: 10.1007/s12540-019-00563-1

    [21]

    Geng H, Li J, Xiong J, et al. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy[J]. Science and Technology of Welding & Joining, 2016, 22(6): 472 − 483.

    [22] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19.

    Liu Liming, He Yajing, Li Zongyu, et al. Microstructure and properties of 316 stainless steel fabricated by wire arc additive manufacturing under different paths [J]. Transactions of the China Welding institution, 2020, 41 (12): 13 − 19.

    [23]

    Lockett H, Ding J, Williams S, et al. Design for wire plus Arc Additive Manufacture: design rules and build orientation selection [J]. Journal of Engineering Design, 2017, 28(7-9): 568 − 598.

    [24]

    Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3813 − 3830. doi: 10.1007/s00170-019-03706-1

    [25]

    Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3): 275. doi: 10.3390/app7030275

    [26]

    Gu J L, Yang S L, Gao M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34: 135 − 148.

    [27]

    Wang P, Zhang H Z, Zhu H, et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: Processing, microstructure, and mechanical behavior[J]. Journal of Materials Processing Technology, 2021, 288: 116895. doi: 10.1016/j.jmatprotec.2020.116895

    [28]

    Zhong Y, Zheng Z Z, Li J J, et al. Fabrication of 316L nuclear nozzles on the main pipeline with large curvature by CMT wire arc additive manufacturing and self-developed slicing algorithm[J]. Materials Science & Engineering: A, 2021, 820: 262 − 276.

    [29]

    Chen J, Wei H, Zhang X, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing[J]. Materials & Design, 2021, 198(2): 109325.

    [30]

    Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226 − 235. doi: 10.1016/j.actamat.2016.03.019

    [31]

    Duarte V R, Rodrigues T A, Schell N, et al. Hot forging wire and arc additive manufacturing (HF-WAAM)[J]. Additive Manufacturing, 2020, 35: 135 − 146.

    [32]

    Liu W Q, Jia C B, Guo M, et al. Compulsively constricted WAAM with arc plasma and droplets ejected from a narrow space[J]. Additive Manufacturing, 2019, 27: 109 − 117. doi: 10.1016/j.addma.2019.03.003

    [33]

    Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering: A, 2019, 751: 183 − 190. doi: 10.1016/j.msea.2019.02.078

    [34]

    Wang J F, Sun Q J, Wang H, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding[J]. Materials Science & Engineering:A, 2016, 676: 395 − 405.

    [35]

    Wu B, Pan Z, Ding D, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160.

    [36]

    Pramod R, Kumar S M, Kannan A R, et al. Fabrication of gas metal arc welding based wire plus arc additive manufactured 347 stainless steel structure: behavioral analysis through experimentation and finite element method[J]. Metals and Materials International, 2022, 28(1): 307 − 321. doi: 10.1007/s12540-021-01026-2

  • 期刊类型引用(4)

    1. 赵艳丽,张安锐,辛勇,袁攀,周毅,王厚勤,李赫. 接头性能差异对Zr-Sn-Nb合金电子束焊接头残余应力的影响. 焊接学报. 2024(05): 105-112 . 本站查看
    2. 孙振邦,刘乐乐,童嘉晖,韩永全,陈芙蓉. 基于改进热源模型的铝合金MIG焊数值分析. 焊接学报. 2023(02): 111-116+128+135-136 . 本站查看
    3. 何奇,李时春,谷金良,肖罡,黄浩. A6061铝合金脉冲MIG焊T型接头应力场有限元模拟. 机械工程材料. 2023(09): 70-75+81 . 百度学术
    4. 王宇超,朱明亮,范曼杰,霍鑫,轩福贞. 多层多道焊接转子工艺模拟及参数优化. 机械强度. 2023(06): 1380-1386 . 百度学术

    其他类型引用(4)

图(8)  /  表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  54
  • PDF下载量:  54
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-05-23
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-10-30

目录

/

返回文章
返回