高级检索

铝钢电磁脉冲焊接界面特性及金属粒子分布分析

迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川

迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析[J]. 焊接学报, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
引用本文: 迟露鑫, 黄岩, 许惠斌, 顾凌翔, 张玉虎, 冉洋, 吴江川. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析[J]. 焊接学报, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
CHI Luxin, HUANG Yan, XU Huibin, GU Lingxiang, ZHANG Yuhu, RAN Yang, WU Jiangchuan. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001
Citation: CHI Luxin, HUANG Yan, XU Huibin, GU Lingxiang, ZHANG Yuhu, RAN Yang, WU Jiangchuan. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 36-43. DOI: 10.12073/j.hjxb.20220523001

铝钢电磁脉冲焊接界面特性及金属粒子分布分析

基金项目: 国家自然科学基金资助项目(51805065);重庆市科委自然科学基金项目(cstc2020jcyj-msxmX0574);先进焊接与连接国家重点实验室开放课题研究资助(AWJ-19M02);重庆理工大学国家自然科学基金项目培育计划(2022PYZ013);重庆理工大学研究生科研创新项目资助(clgycx20203015);重庆理工大学大学生创新创业训练计划(2022CX175).
详细信息
    作者简介:

    迟露鑫,博士,副教授,硕士研究生导师;主要从事异种金属电磁脉冲焊接连接机理及数值模拟研究;Email: chiluxin200195@163.com

  • 中图分类号: TG 456.9

Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel

  • 摘要: 为明确铝/钢电磁脉冲焊接过程金属粒子运动对界面连接性能的影响,基于金属粒子流形成机理,对界面形貌及抗剪强度进行分析.结果表明,金属粒子滞留界面造成铝局部熔化,钢粒子原位生成FeAl,形成未结合区;沿着焊接方向,分射流对铝板压入作用逐渐增大,形成冶金结合的界面,并伴有富铝金属间相,直缝区为FeAl + Fe2Al5,小波区为Fe2Al5 + FeAl3,大波区为FeAl + FeAl3;铝钢焊接界面过渡区由塑变铝压入钢形成,铝侧焊缝的外边缘存在钢粒子,而钢侧焊缝存在熔融铝携带钢粒子,主要为FeAl + Fe2Al5 + FeAl3,且在焊缝内侧滞留了大量金属粒子,并以椭圆环的形式分布,在焊缝外侧,金属粒子滞落铝板表面造成凹坑,但在钢板表面为嵌入的片状铝;因此,在金属粒子滞留,并产生较多金属间化合物的位置成为剪切试验断裂源;通过波长公式调整搭接间隙,减少粒子滞留界面,椭圆焊缝断裂于铝材,提高了接头强度.
    Abstract: In order to investigate the effect of metal particle movement on interface connection performance in electromagnetic pulse welding of aluminum to steel, based on the formation mechanism of metal particles, the interfacial structure and tensile shear strength were analyzed. The results showed that metal particle entrapment at the interface caused local melting of aluminum. Steel particles generated in situ FeAl, forming an unbonded zone. Along the welding direction, the impact effect of the separate jet on the aluminum plate gradually increased, forming a metallurgical bond, accompanied by aluminum-rich intermetallic phases. FeAl + Fe2Al5 existed in the straight seam. Fe2Al5 + FeAl3 existed in the corrugated zone. FeAl + FeAl3 existed in the large corrugated zone. The transition zone of the welding interface was formed by plastic deformation of aluminum pressed into the steel. There were steel particles on the outer side of the aluminum plate weld, while there were molten aluminum carrying steel particles at the steel plate weld, mainly composed of FeAl + Fe2Al5 + FeAl3. A large number of metal particles gathered on the inner side of the weld and were distributed in the form of elliptical rings. Metal particles remained on the surface of the aluminum plate, causing pits, but there were embedded sheets of aluminum on the surface of the steel plate. Therefore, locations where metal particles were trapped and more intermetallic compounds were produced became shear fracture sources. The wavelength formula was used to adjust the lap gap to reduce particle entrapment, breaking the elliptic weld at the aluminum, and improving joint strength.
  • 核反应堆包层结构经受着极其恶劣的服役环境,要求其在长期服役过程中保持结构和冶金的完整性. 9Cr-1.5W-0.15Ta耐热钢具有较低的辐照肿胀系数和热膨胀系数、较高的热导率等优异的热物理性能和良好的力学性能,被认为是核聚变/裂变发堆包层结构的理想候选材料之一[1-4].

    为了减小热影响区宽度,保持接头良好的组织性能,多采用低热输入、高能量密度的特种焊接技术对9Cr-1.5W-0.15Ta耐热钢进行焊接[5-7]. 搅拌摩擦焊(Friction stir welding, FSW)是一种新型固态塑性连接技术,焊接热输入较低,可以保持焊缝性能与母材相近,焊接变形和残余应力较小等的特点[8-9]. 与搅拌摩擦焊相比,电子束焊(electron beam welding,EBW)是一种高效率、高能量密度的熔化焊接方法,具有焊接冶金质量好、焊接熔深大和焊接热影响区窄的特点,具有适用性强、操作简便等优势[10-11]. 因此,对比研究9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊缝和电子束焊缝组织和力学性能的差异具有重要意义.

    文中对9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的微观组织、硬度和冲击性能进行比较,分析微观组织与力学性能之间的关联性,并论述接头的断裂机制.

    试验采用的母材为9Cr-1.5W-0.15Ta耐热钢,其化学成分如表1所示. 母材热处理工艺如下:1000 ℃下正火保温60 min,水淬之后在700 ℃下回火60 min. 搅拌摩擦焊机为北京赛福斯特技术有限公司生产的FSW-3LM-020型设备,搅拌头的材料为W-25%Re合金. 焊接工艺参数为焊接速度60 mm/min,焊接转速300 r/min和焊接压力10 kN. 电子束焊机选择KL110型真空电子束焊机设备. 焊接加速电压60 kV,焊接电流30 mA,焊接速度600 mm/min,在全聚焦状态下以束流垂直于板面的方式进行焊接.

    沿垂直于焊接方向切取尺寸为25 mm × 10 mm的试样,经过粗磨、细磨和抛光后,在5 g FeCl3, 20 mL盐酸和100 mL蒸馏水的腐蚀液中侵蚀90 s制备金相试样. 采用光学显微镜(OLYMPUS GX51)和电子扫描显微镜(SEM,TDCLSU 1510)对接头区域的微观组织进行观察. 采用型号为Tecnai G2F30透射电子显微镜在300 kV加速电压下观测析出相.

    低温冲击试验试样尺寸如图1所示,冲击试验后,采用电子扫描显微镜观测冲击试样断口形貌. 硬度试验是在金相试样上焊缝区域测试,载荷为9.8 N,加载时间为15 s.

    表  1  9Cr-1.5W-0.15Ta耐热钢化学成分(质量分数,%)
    Table  1.  Chemical composition of the 9Cr-1.5W-0.15Ta heat resistant steel
    CCrMnVWTaSiZrNSPFe
    0.190.50.21.50.150.050.0050.0070.0020.002余量
    下载: 导出CSV 
    | 显示表格
    图  1  焊缝低温冲击试样取样位置和几何尺寸(mm)
    Figure  1.  Dimension and position of impact toughness testing sample in the weld

    9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝的微观组织如图2所示. 图2a, b是9Cr-1.5W-0.15Ta耐热钢母材的微观组织,由于经过正火、淬火和回火等热处理后,具有完全的回火的组织特征,晶粒尺寸大约为20 μm,并在原奥氏体晶界和晶内形成均匀分布的析出相(M23C6和MX). 电子束焊缝的微观组织如图2c, d所示,其特点为晶粒粗大,组织不均匀,且晶界处的M23C6析出相和晶内MX析出相均发生完全溶解. 虽然电子束焊能量密度较大,熔池中心温度高,但其高温停留时间短,焊后冷却速度较大,因此在熔合线形成较大的温度梯度,促进粗大的树枝状组织的形成. 从焊缝两边生长的晶粒在焊缝中心处相遇,形成了垂直于母材原始晶粒取向的组织结构.

    图2e, f为搅拌摩擦焊缝的微观组织. 在焊接过程中,焊缝由于受到搅拌针剧烈的搅拌而引起严重的塑性变形和摩擦,产生的局部高温作用使得组织发生动态再结晶,加之焊后冷却速率较大,发生马氏体转变[12]. 因此,搅拌摩擦焊缝的组织由回火组织转变为板条马氏体. 焊缝区域晶粒发生明显细化,这是由于该区域受到搅拌针的机械作用,动态再结晶的晶粒发生破碎而细化. 此外,在搅拌摩擦焊缝中晶界上的M23C6析出相发生完全溶解,而晶内依然存在球状MX析出相,这表明焊缝区域经历的焊接热循环峰值温度高于M23C6相的熔点(860 ℃)、但低于MX相熔点(1310 ℃)[13-14].

    图  2  母材、电子束焊缝和搅拌摩擦焊缝的微观组织特征
    Figure  2.  Microstructure of base metal, EBW weld and FSW weld. (a) metallographic of base metal; (b) SEM microstructure of base metal; (c) metallographic of EBW weld; (d) SEM microstructure of EBW weld; (e) metallographic of FSW weld; (f) SEM microstructure of FSW weld

    图3为母材和搅拌摩擦焊缝中析出相特征. 母材中M23C6碳化物和球状MX相分别均匀地分布在原奥氏体晶界和晶内(图3a, b). 焊后晶界处M23C6碳化物发生完全溶解,球状MX碳氮化物无明显变化,但对位错产生强烈的钉扎作用,同时在板条马氏体内生成大量的针状M3C相,主要由W,Cr,Fe和C组成(图3c ~ 3f). 这主要是由于M23C6碳化物的溶解在晶界和晶内之间产生C和Cr原子的浓度梯度,同时焊接过程中的奥氏体化再结晶和马氏体转变诱导位错和空位等晶格缺陷增殖,为针状M3C碳化物析出提供了形核质点和原子扩散通道,促进了M3C碳化物的析出[15].

    图  3  母材和搅拌摩擦焊缝析出相的特征
    Figure  3.  Characteristics of precipitates for base metal and FSW weld. (a) M23C6 phase in base metal; (b) MX phase in base metal; (c) M23C6 phase in FSW weld; (d) MX phase in FSW weld; (e) M3C phase in FSW weld; (f) energy spectrum of M3C phase

    表2为母材、电子束焊缝和搅拌摩擦焊缝硬度结果. 相比于9Cr-1.5W-0.15Ta耐热钢的硬度(272 HV),两种焊缝的硬度明显增大,电子束焊缝硬度值为475 HV,搅拌摩擦焊缝硬度值为425 HV. 焊缝区明显硬化,这是由于在焊接过程中焊接热循环峰值温度高于母材的相变温度,在焊后快速冷却导致焊缝中形成大量的板条状马氏体组织,使得焊缝的硬度增大[16-17].

    表  2  母材、电子束焊缝和搅拌摩擦焊缝显微硬度(HV)
    Table  2.  Microhardness of the base metal, EB and FSW welds
    母材EBW焊缝FSW焊缝
    272475425
    下载: 导出CSV 
    | 显示表格

    图4是9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击吸收能量. 由图可知,母材的冲击吸收能量为34.35 J,搅拌摩擦焊焊缝冲击吸收能量为31.1 J,而电子束焊焊缝的冲击吸收能量为4.2 J,仅为母材的12.2%和搅拌摩擦焊缝的13.5%.

    图  4  母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击韧性
    Figure  4.  Impact toughness of base materials, EBW and FSW welds at −20 ℃

    接头的力学性能主要取决于其微观组织特征. 与母材相比,搅拌摩擦焊接头韧性稍有降低,这是焊缝区晶粒细化、高角度晶界增加阻碍裂纹扩展而改善接头韧性和位错密度增加而恶化冲击性能的共同结果[18-20]. 除此之外,残余奥氏体的存在也对改善接头韧性具有重要影响[21]. 相比于搅拌摩擦焊接头,电子束焊接头韧性显著降低,这主要是由于在焊缝中树枝状组织的形成,使焊缝韧性明显降低. 另外,电子束焊接过程中热输入较大,引起晶粒粗化和析出相溶解等组织变化,对接头的冲击韧性产生重要影响.

    图5为母材、电子束焊缝和搅拌摩擦焊缝试样冲击后的断口形貌. 由于微观组织特征的差异,导致焊接接头力学性能的不同,同时也在冲击断口形貌上表现明显的不同. 母材的冲击断口形貌表现为典型的韧窝特征,并且韧窝大小和形状存在明显差别,发现小尺寸韧窝密度远多于大尺寸韧窝(图5a). 电子束焊缝冲击断口则表现为典型的解理断裂,同时局部还可以发现较深的裂纹(图5b). 搅拌摩擦焊缝冲击断口形貌均表现为大小和形状均匀的韧窝特征,在部分韧窝底部存在第二相粒子脱落的现象,并且由于冲击变形而形成少量的撕裂痕,断裂方式属于微孔聚集型断裂(图5c). 综上,母材和搅拌摩擦焊缝的冲击断裂方式属于典型的延性断裂,而电子束焊缝的冲击断裂方式属于脆性断裂.

    图  5  冲击试样的断口形貌
    Figure  5.  Fracture morphology of impact specimens. (a) base metal; (b) EBW weld; (c) FSW weld

    电子束焊缝和搅拌摩擦焊缝的冲击断口形貌与母材有不同程度的差异. 在搅拌摩擦焊缝中,由于发生动态再结晶,晶粒尺寸明显细化,同时仅部分低熔点析出相溶解,冲击断口表现尺寸较大的韧窝特征,导致冲击韧性发生稍稍降低. 然而,对于电子束焊缝,微观组织为粗大的树枝状晶,并且析出相均发生溶解,导致在冲击过程中协调变形能力变弱,断口表现为典型的解理断裂特征. 因此,电子束焊缝的冲击韧性显著降低.

    (1) 9Cr-1.5W-0.15Ta耐热钢电子束焊缝呈树枝状晶微观组织,晶粒粗大,组织不均匀,且析出相均发生溶解;搅拌摩擦焊缝则由细小、均匀的板条马氏体微观组织组成,部分晶界析出相发生溶解.

    (2) 由于在焊缝中有大量板条马氏体生成,9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的硬度值均发生了显著增大,电子束焊缝的硬度值最高可达到475 HV.

    (3) 两种焊缝的冲击韧性均低于母材,但由于电子束焊缝和搅拌摩擦焊缝中晶粒尺寸、析出相的差异,不同焊缝表现不同的力学性能. 电子束焊缝的冲击吸收能量仅为母材的12.2%;搅拌摩擦焊缝的力学性能较好,其冲击吸收能量为母材的90%.

  • 图  1   电磁脉冲焊接过程

    Figure  1.   The welding process for the EMPW joint. (a) welding principle; (b) weldment assembly

    图  2   焊接接头抗剪试样及界面特征

    Figure  2.   Tensile shear specimen and interface characteristic of welded joint. (a) shear specimen; (b) macroscopic morphology of welding interface

    图  3   金属粒子流动行为与界面波形的关系[13]

    Figure  3.   Relationship between flow behavior of metal particles and interface waveform. (a) metal particle flow distribution; (b) formation of interface waveform

    图  4   焊接界面波形特性

    Figure  4.   Characteristics of welding interface. (a) unbound zone; (b) straight seam zone; (c) Wavelet zone; (d) large wave zone

    图  5   椭圆环形焊缝特征

    Figure  5.   Characteristics of elliptical annular weld. (a) shear fracture; (b) four positions for SEM

    图  6   区域1的断口表面特征(图5b的区域)

    Figure  6.   Fracture surface characteristics of zone 1 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  7   区域2的断口表面特征(图5b的区域)

    Figure  7.   Fracture surface characteristics of zone 2 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  8   区域3的断口表面特征(图5b的区域)

    Figure  8.   Fracture surface Characteristics of zone 3 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface

    图  9   区域4的断口表面特征(图5b的区域)

    Figure  9.   Fracture surface characteristics of zone 4 (zone in Fig.5b). (a) Fe element distribution at aluminum fracture surface; (b) Al element distribution at steel fracture surface; (c) Lorentz force distribution of aluminum plate

    图  10   焊缝断口表面金属粒子分布

    Figure  10.   Metal particle distribution at the fracture surface of weld. (a) fracture surface of the weld at the aluminum side; (b) fracture surface of the weld at the steel side

    图  11   铝钢焊接接头抗剪的断裂位置

    Figure  11.   Fracture position of shear of welded joint with aluminum to steel

    表  1   6061铝合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061 aluminum alloy

    AlCuMnMgZnFeSiCr
    余量0.2460.150.960.250.70.4930.05
    下载: 导出CSV

    表  2   304不锈钢的化学成分(质量分数,%)

    Table  2   Chemical compositions of 304 stainless steel

    FeSiCrCMnPSNi
    余量0.75≤1.00.082.00.0350.01511
    下载: 导出CSV

    表  3   图4的4个区上的点扫描(原子分数,%)

    Table  3   EDS results of four zones in Fig.4

    测点AlFeCr可能的相
    166.3526.097.56Fe2Al5
    259.0232.018.97FeAl
    365.9426.197.87Fe2Al5
    476.7218.205.07FeAl3
    569.8223.466.72FeAl3
    651.9633.8514.19FeAl
    下载: 导出CSV
  • [1]

    Zhang Changing, Liu Xiao, Jin Xin, et al. Study on resistance spot brazing process and joint performance of pure aluminum 1060 / galvanized steel[J]. China Welding, 2021, 30(1): 37 − 42.

    [2] 张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014

    Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014

    [3] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    [4]

    Liu Jinglin, Hao Zilin, Xie Yuming, et al. Interface stability and fracture mechanism of Al/Steel friction stir lap joints by novel designed tool[J]. Journal of Material Processing Technology, 2022, 300: 1 − 11. doi: 10.1007/s00170-020-05815-8

    [5]

    Lu Zhenyang, Gong Wentao, Chen Shujun, et al. Interfacial microstructure and local bonding strength of magnetic pulse welding joint between commercially pure aluminum 1060 and AISI 304 stainless steel[J]. Journal of Manufacturing Processes, 2019, 46: 59 − 66. doi: 10.1016/j.jmapro.2019.07.041

    [6]

    Yu Haiping, Dang Haiqing, Qiu Yanan. Interfacial microstructure of stainless steel/aluminum alloy tube lap joints fabricated via magnetic pulse welding[J]. Journal of Material Processing Technology, 2017, 250: 297 − 303. doi: 10.1016/j.jmatprotec.2017.07.027

    [7]

    Geng Huihui, Sun Liqiang, Li Guangyao, et al. Fatigue fracture properties of magnetic pulse welded dissimilar Al-Fe lap joints[J]. International Journal of Fatigue, 2019, 121: 146 − 154. doi: 10.1016/j.ijfatigue.2018.12.027

    [8]

    Wang Shaoluo, Zhou Binbin, Zhang Xu, et al. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel[J]. Material Science & Engineering A, 2020, 788: 139425.

    [9]

    Kakizaki S, Watanabe M, Kumai s. Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding[J]. Material Transaction, 2011, 52(5): 1003 − 1008. doi: 10.2320/matertrans.L-MZ201128

    [10]

    Chi Luxin, Wang Xinxin, Ran Yang, et al. Experimental study and numerical simulation of interfacial morphology by electromagnetic pulse welding with aluminum to steel[J]. Material Transaction, 2021, 62(9): 1343 − 1351. doi: 10.2320/matertrans.MT-M2021036

    [11]

    Qi Junxiang, Miao Guanghong, Ai Jiuying, et al. Study on numerical simulation of TA1-304 stainless steel explosive welding[J]. China Welding, 2021, 30(2): 11 − 16.

    [12] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(4): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    [13]

    Bahrani A S, Black T J, Crossland B. The mechanics of wave formation in explosive welding[J]. Mathematical Physical & Engineering Science, 1967, 296: 123 − 136.

    [14]

    Reid S R. Wake instability mechanism for wave formation in explosive welding[J]. International Journal of Mechanical Sciences, 1978, 20(4): 247 − 253. doi: 10.1016/0020-7403(78)90086-3

    [15]

    Li Y L, Liu Y R, Yang J, et al. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint[J]. Optics and Laser Technology, 2020, 122: 105875. doi: 10.1016/j.optlastec.2019.105875

    [16] 申中宝, 邱然锋, 石红信, 等. 铝/钢固态焊接结合界面金属间化合物生长机制[J]. 焊接学报, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155

    Shen Zhongbao, Qiu Ranfeng, Shi Hongxin, et al. Growth mechanism of intermetallic compounds at the solid-state joining interface of aluminum/steel[J]. Transactions of the China Welding Institution, 2019, 40(6): 58 − 63. doi: 10.12073/j.hjxb.2019400155

    [17] 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

    Yan Fei, Zhou Yifan, Tang Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98 − 103. doi: 10.12073/j.hjxb.20220101004

  • 期刊类型引用(2)

    1. 曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 . 本站查看
    2. 李冬毓,孙万田. 稳定化热处理对厚壁TP347钢管焊接接头组织和性能的影响. 焊接. 2023(05): 45-50 . 百度学术

    其他类型引用(1)

图(11)  /  表(3)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  39
  • PDF下载量:  67
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-22
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回