Study on microstructure and mechanical properties of new generation high-magnesium aluminum alloy cross-welded joints by friction stir welding-friction stir welding
-
摘要: 为满足大型铝合金船舶壁板的制造需求,对新一代高镁铝合金进行了搅拌摩擦交叉焊接试验. 结果表明,交叉焊接头成形良好,搅拌区晶粒尺寸最小,热力影响区晶粒形态没有明显方向性,与单道搅拌摩擦焊相比,交叉焊接头搅拌区晶粒组织更细. 显微硬度测试结果表明,交叉焊接头显微硬度变化范围较小,前进侧接头软化明显;拉伸试验测试结果表明,交叉焊接头抗拉强度为340 MPa,为母材强度的87%,对比搅拌摩擦焊接头抗拉强度358 MPa略微降低,在热影响区断裂,断裂方式为45°韧性断裂;疲劳裂纹萌生于焊缝底部,在最大应力150 MPa下循环超2 × 106次未断裂,疲劳性能良好,瞬断区断裂方式为韧性断裂.Abstract: In order to meet the manufacturing requirements of large aluminum alloy ship panels, the cross-welded by friction stir welding-friction stir welding (FSW/FSW) tests of new generation high-magnesium aluminum alloy were carried out. The results show that a well FSW/FSW joint was obtained. Grain size in stir zone (SZ) is the smallest, and there is no obvious directionality of grains morphology in thermo mechanical affected zone (TMAZ). The grain size in the SZ of the FSW/FSW joint is smaller than that of the FSW. Hardness test results show that hardness in the FSW/FSW weld joint has a smaller variation range as compared to the FSW joint. A soft region appears in the advancing side (AS) of the FSW/FSW joint. Tensile test results show that the tensile strength of FSW/FSW joint is 340 MPa, which is around 87% of the base material. The tensile samples fracture in the heat-affected zone (HAZ) is a typical ductile fracture mode along the 45° to the tensile direction. The strength of the FSW/FSW joint is slightly lower than that of FSW joint (358 MPa). The fatigue cycle of the cross-welded joint is up to 2 × 106 times without fracture when the maximum stress is 150 MPa, indicating an excellent anti-fatigue performance. Fatigue cracks main initiate at the bottom of the joint, and the fracture mode of transient fault zone is ductile fracture.
-
-
表 1 新一代高镁铝合金化学成分(质量分数,%)
Table 1 Chemical composition of new generation high-magnesium aluminum alloy
Mg Mn Fe Si Zn Zr Cu Al 6.2 0.85 0.4 0.35 0.12 0.017 0.012 余量 表 2 FSW/FSW疲劳结果
Table 2 Fatigue test results by FSW/FSW
编号 应力σ/MPa 循环次数N/次 断裂情况 1 80 1 × 107 未断裂 2 100 5 × 106 未断裂 3 150 2 × 106 未断裂 1-1 135 1.1 × 105 断裂 2-1 100 5 × 104 断裂 3-1 150 4.2 × 104 断裂 -
[1] Torzewski J, Grzelak K, Wachowski M, et al. Microstructure and low cycle fatigue properties of AA5083 H111 friction stir welded joint[J]. Materials, 2020, 13(10): 2381. doi: 10.3390/ma13102381
[2] 王德升, 王政红, 王鹏云, 等. 国产与进口5083-H116铝合金微观组织及疲劳裂纹扩展速率研究[J]. 材料开发与应用, 2021, 36(5): 20 − 29. Wang Desheng, Wang Zhenghong, Wang Pengyun, et al. Microstructures and fatigue crack growth rates of domestic and imported 5083-H116 aluminum alloy[J]. Development and Application of Materials, 2021, 36(5): 20 − 29.
[3] 韩善果, 闫德俊, 刘晓莉, 等. 1561铝合金TIG焊接头组织与力学性能分析[J]. 焊接技术, 2015, 44(1): 18 − 21. Han Shanguo, Yan Dejun, Liu Xiaoli, et al. Analysis of microstructure and mechanical properties of 1561 aluminum alloy TIG welded joint[J]. Welding Technology, 2015, 44(1): 18 − 21.
[4] 闫德俊, 韩端锋, 王毅, 等. 1561铝合金双面双弧TIG焊接接头的组织和力学性能[J]. 中国有色金属学报, 2016, 26(10): 2065 − 2070. Yan Dejun, Han Duanfeng, Wang Yi, et al. Microstructure and mechanical properties of 1561 aluminum alloy joints made by double-sided arc welding[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2065 − 2070.
[5] 付文智, 刘晓东, 王洪波, 等. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822 − 1828. Fu Wenzhi, Liu Xiaodong, Wang Hongbo, et al. Multi-point forming process of 1561 aluminum alloy surfaces[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1822 − 1828.
[6] 闫德俊, 王 赛, 郑文健, 等. 1561 铝合金薄板随焊干冰激冷变形控制[J]. 机械工程学报, 2019(6): 67 − 73. Yan Dejun, Wang Sai, Zheng Wenjian, et al. Control of welding distortion by welding with trailing cooling of drikold of 1561 aluminum alloy thin sheet[J]. Journal of Mechanical Engineering, 2019(6): 67 − 73.
[7] Ma M Y, Lai R L, Qin J, et al. Achieving exceptionally tensile properties and damage tolerance of 5083 aluminum alloy by friction stir processing assisted by ultrasonic and liquid nitrogen field[J]. Materials Science and Engineering A, 2021, 806(80): 140824.
[8] Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706. doi: 10.1016/j.pmatsci.2020.100706
[9] Liu J. Application and development of friction stir welding technology in high speed EMU manufacturing[J]. China Welding, 2018, 27(4): 57 − 62.
[10] 温林秀, 赵运强, 董春林, 等. 1561 铝合金搅拌摩擦焊接过程压力特征及接头组织性能分析[J]. 焊接学报, 2019, 40(12): 91 − 96. Wen Linxiu, Zhao Yunqiang, Dong Chunlin, et al. Study on characteristics of welding pressure, microstructures and mechanical properties of friction stir welded 1561 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(12): 91 − 96.
[11] 董春林, 赵运强, 温林秀, 等. 1561铝合金搅拌摩擦焊接头微观组织分析[J]. 焊接学报, 2020, 41(10): 1 − 5. doi: 10.12073/j.hjxb.202000709002 Dong Chunlin, Zhao Yunqiang, Wen Linxiu, et al. Study on microstructures of friction stir welded joint of 1561 aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(10): 1 − 5. doi: 10.12073/j.hjxb.202000709002
[12] 闫文青, 刘东, 鄢文泽, 等. 1561铝合金MIG焊接头的低周疲劳性能研究[J/OL]. 热加工工艺, 1 − 4 [2022−01−24]. https://doi.org/10.14158/j.cnki.1001-3814.20210346. Yan Wenqing, Liu Dong, Yan Wenze, et al. Study on low cycle fatigue properties of 1561 aluminum alloy welded joints[J/OL]. Hot Working Technology, 1 − 4 [2022−01−24]. https://doi.org/10.14158/j.cnki.1001-3814.20210346.
[13] 周曙君, 郭训忠, 邢丽. T6态7A09铝合金搅拌摩擦焊接接头的疲劳性能及组织[J]. 机械工程材料, 2011, 35(5): 55 − 58. Zhou Shujun, Guo Xunzhong, Xing Li. Fatigue property and microstructure of FSW joint of 7A09-T6 aluminum alloy[J]. Materials for Mechanical Engineering, 2011, 35(5): 55 − 58.
[14] Czechowski M. Low-cycle fatigue of friction stir welded Al–Mg alloys[J]. Journal of Materials Processing Technology, 2005, 164−165: 1001 − 1006. doi: 10.1016/j.jmatprotec.2005.02.078