高级检索

数值模拟技术在激光焊接过程中的应用及发展

芦凤桂, 邓德安, 王亚琦, 邵晨东

芦凤桂, 邓德安, 王亚琦, 邵晨东. 数值模拟技术在激光焊接过程中的应用及发展[J]. 焊接学报, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
引用本文: 芦凤桂, 邓德安, 王亚琦, 邵晨东. 数值模拟技术在激光焊接过程中的应用及发展[J]. 焊接学报, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001
Citation: Fenggui LU, Dean DENG, Yaqi WANG, Chendong SHAO. Application and development of numerical simulation technology in laser welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 87-94. DOI: 10.12073/j.hjxb.20220430001

数值模拟技术在激光焊接过程中的应用及发展

基金项目: 国家自然科学基金资助项目(52171040,U2141213,52001200)
详细信息
    作者简介:

    芦凤桂,博士,教授,博士研究生导师;主要研究方向为焊接过程建模及非均匀组织可靠性评估;Email: lfg119@sjtu.edu.cn

  • 中图分类号: TG 456.7,TG 402, TG 404

Application and development of numerical simulation technology in laser welding process

  • 摘要: 激光焊接以其高效率、高精度成为材料高质量连接的先进方法. 激光焊接过程涉及材料对激光能量的吸收与反射、熔化与蒸发、熔池的流动、匙孔的波动等多个物理场问题,建立反映激光焊接热过程特点的数值模型,进而定量描述并澄清影响材料激光焊接质量的关键因素及演变过程,为材料高品质激光焊接制造提供理论支撑和科学思路. 文中从影响激光焊缝成形质量及服役性能的焊接缺陷、组织演变、残余应力几个方面入手,阐述数值模拟技术在激光焊接基础问题方面的应用及发展.
    Abstract: Laser welding has become an advanced method in joining materials with high quality due to its high efficiency and high precision. Multi-physical field issues are involved during laser welding process, such as absorption and reflection of laser energy, melting and evaporation of materials, flow of molten pool, fluctuation of keyhole and etc. Establishment of numerical model to reflect the feature of thermal process, and further quantitative description to elucidate key factors and evolution process affecting the laser welding quality, can provide theoretical support and scientific path for high quality laser welding and manufacturing. From the aspect of welding defects, microstructural evolution and residual stress that influences formation quality and service property of laser welds, this paper elaborates the application and development of numerical simulation technology in fundamental problem research of laser welding.
  • 激光焊接由于其焊接速度快、热输入量低、焊接变形小等优势,已经广泛应用于汽车制造、航空航天、能源装备及船舶制造等工业生产焊接制造过程中. 激光焊接过程涉及到材料对激光能量的吸收过程、材料的熔化与蒸发、等离子体(羽烟)的形成、熔池与匙孔的形成、凝固与相变等复杂的多物理场问题,建立合理的反映激光焊接热过程特点的数值模型,定量描述和澄清激光焊接过程中的熔化、蒸发、凝固等物理现象,对于更好地理解和掌握激光热过程对焊缝成形、组织及应力演化的影响规律及内在机理十分重要,故数值模拟方法是焊接关键问题科学研究的强有力分析手段[1].

    激光焊接自身快速熔凝的特点导致其焊接过程中更易产生驼峰、气孔、飞溅、侧壁未熔合等焊接缺陷[2-5],直接影响激光焊缝成形质量,另外激光焊缝组织梯度大及残余应力等问题也成为影响激光焊接构件服役性能的重要因素.

    文中从影响激光焊缝成形质量及服役性能的焊接缺陷、组织演变、残余应力几个方面入手,阐述数值模拟技术在激光焊接基础问题方面应用及发展.

    激光焊缝成形过程及相关缺陷的产生与熔池的流动行为、匙孔的动态波动及熔池的凝固过程密切相关. 此部分主要是针对熔池流动及匙孔行为进行阐述.

    在激光高速焊接时,焊缝表面成形主要涉及驼峰、咬边、未熔合、焊穿等问题,这与熔池流动及匙孔行为密切相关. 在表面驼峰成形方面,Otto等人[6]模拟研究了激光焊接表面驼峰的形成过程,发现金属蒸气的剪切力导致熔化金属向后加速,形成的熔体支流沿侧壁向后铺展,两侧支流汇聚形成驼峰.

    在激光熔透焊接时,根部焊缝成形控制非常重要. Zhang等人[7]利用自行研发的三维激光焊接模型,利用锐利界面方法处理了影响匙孔动态行为的关键物理因素,发现小孔根部的流体受到强烈的蒸气反作用力导致根部驼峰的形成,如图1所示. Bachmann等人[8-9]研究表明激光熔透焊接过程中电磁力可以改变熔池的流动方向,进而阻止熔池下坠,利于熔透焊缝根部成形.

    图  1  背部驼峰形成时的小孔行为
    Figure  1.  Behavior of keyhole when the root humping is formed

    在激光焊接咬边、焊穿等成形方面,Cho等人[10]发现增加激光束震动频率改变了能量的传输及熔池的流动行为,从而明显改善焊缝成形质量,咬边和焊穿情况也得到明显改善,如图2所示.

    图  2  不同震动频率下的激光焊缝成形情况
    Figure  2.  Laser weld formation under different vibration frequency

    在焊缝气孔缺陷形成方面,许多学者分别在气泡形成、影响因素及气孔的演化等方面做了大量的数值模拟工作来研究气孔形成过程及其抑制机理. Zhao等人[11]认为当匙孔深度突然变大时容易造成匙孔坍塌,气体进入熔池形成气泡. Pang等人[12-13]自行开发了考虑匙孔、金属蒸气羽烟及熔池动态行为的三维多相自洽模型,发现蒸气羽烟摆动频率与匙孔波动频率近乎一致,阐明了蒸气羽烟形成的负压导致了匙孔后壁形成涡流,从而诱发环境气体卷入匙孔,促进了气泡的形成,如图3所示.

    图  3  匙孔内蒸气羽烟行为及压力分布
    Figure  3.  Evolution of vapor plume velocity inside the transient keyhole and relative pressure

    气泡能否演化为气孔涉及到熔池流动行为及凝固过程,Lu等人[14-15]模拟发现气泡迁移过程中存在消失、合并等现象,且被凝固界面捕获后才会演变成气孔,如图4所示. 另外低沸点元素蒸发对匙孔动态行为有着重要的影响,Huang等人[16-17]模拟考虑了Mg元素含量对激光焊接铝合金气孔生成的影响,认为Mg元素含量增加使得蒸气反作用力增加,从而使得匙孔更加稳定,降低了匙孔型气孔的生成. 激光震荡在消除气孔方面的作用机理也得到了模拟澄清[18-19],其根本原因除了激光震荡过程可以提高气泡逃逸速度外,模拟还发现气泡在震荡过程中被匙孔合并导致气泡消失,进而消除气孔的机理.

    图  4  气泡向气孔的演变过程
    Figure  4.  Evolution process from bubble to pore. (a) 0.20 s; (b) 0.25 s; (c) 0.30 s; (d) 0.35 s; (e) 0.40 s; (f) 0.50 s

    飞溅的产生会带来金属的元素损失,并影响焊缝成形质量. Hugger等人[20]模拟了钢、铝激光焊接过程,发现熔体首先在匙孔的边缘产生驼峰,在表面张力作用下颈缩,在冲击力的作用下离开表面形成飞溅,如图5所示. Chang等人[21]研究认为铝合金激光焊接时飞溅的产生与熔池的流动速度和涡流密切相关. Wu等人[22]模拟发现匙孔后壁的熔池沿熔合线向上流动,导致上表面飞溅产生.由于飞溅产生的影响因素较为复杂,考虑金属蒸气行为对于理解飞溅产生的过程十分必要.

    图  5  铝合金激光焊接飞溅产生过程
    Figure  5.  Formation process of spatter

    激光焊接过程中低沸点元素蒸发诱发飞溅产生的情况,也引起了学者的兴趣. Hao等人[23-25]模拟研究了锌蒸气对匙孔与熔池动态行为的影响,分析了飞溅产生的过程,如图6所示,模拟还发现激光折线扫描路径下,由于锌蒸气分阶段进入匙孔,冲击力减小,使得匙孔和熔池更加稳定,明显降低了飞溅情况. Qi等人[26]模拟环形激光热源作用下镀锌钢板的飞溅情况,认为产生飞溅的主要原因是熔池中的回流和涡流导致,同轴环形和高斯热源的匹配增加了回流的阻力,进而控制了飞溅的产生.

    图  6  锌蒸气在匙孔中的流动行为
    Figure  6.  Fluid flow of zinc vapor

    宏、微观组织的模拟也是激光焊接数值模拟的重要组成部分,近年来,各国学者已对激光焊缝组织的仿真进行了相关尝试,本节主要针对这方面的研究进展进行介绍.

    目前,针对焊缝宏观组织的数值模拟主要集中于异种材料因元素混合不均匀引起的宏观偏析方面. Gu等人[27]利用元素分离法实现了不同材料在激光选区熔化过程中的界面相迁移行为的模拟. Yao等人[28]利用该方法,并结合微尺度流体动力学和纳秒级别的热扩散分析,实现了316L不锈钢/Inconel 718异种材料激光熔池中鱼鳞状宏观偏析组织的模拟,如图7所示,这种宏观偏析组织的仿真重点在于界面参数的优化.

    图  7  单道激光扫描焊缝截面元素分布模拟结果
    Figure  7.  Alloy distribution for single-track laser scan. (a) experimental result of element distribution; (b) simulation result of element distribution

    焊缝微观组织的数值模拟的研究主要有以下3种方法:相场法、元胞自动机法以及蒙特卡罗法,且每种方法的侧重点不同.

    Fallah等人[29]采用相场法,针对不同条件下Ti-Nb合金激光熔池中的一次枝晶臂间距进行了模拟计算. Mi等人[30]同样利用这一方法对Al-Cu合金激光焊熔池中的竞争生长行为进行了研究,发现在非最优取向的晶粒会影响到相邻晶粒的生长,晶界处的枝晶更易于在横向生长,通过阻碍其它方向枝晶的生长路径,进而改变不同取向晶粒的尺寸. Geng等人[31-32]发现Al-Mg较Al-Cu合金会在凝固过程中更早地发生广泛的枝晶连接现象,从而使其裂纹敏感性更低,这可以归因于其一次枝晶较低的溶质偏析,如图8a8b所示.

    图  8  溶质分布及晶粒形貌模拟结果
    Figure  8.  Simulation results of solute distribution and microscopic morphologies. (a) solute distribution in columnar growth of Al-4.0%Cu alloy; (b) solute distribution in columnar growth of Al-4.0%Mg alloy; (c) microscopic morphologies with different pre-heating temperatures in a single track

    相较于相场法,元胞自动机法以其计算效率高、所需的模型参数少、试验匹配度较好的特点,得到了越来越多的关注. Ao等人[33]利用该方法对激光熔池的微观组织进行了模拟,结果如图8c所示,可见等轴晶比例会随着预热温度的增加和激光扫描速度的降低而显著增加,而等轴晶形貌会随着相邻两道激光距离的增加变得更加长而窄. Shi等人[34]利用该模型结合有限元的方法,实现了含气孔的不同柱状晶和等轴晶比例的熔池的仿真,并发现熔池晶粒生长形态取决于熔池的宽度、深度以及过冷度. 近期,Liu等人[35]提出了结合三维元胞自动机法和一维相场法的新模型,通过结合元胞自动机法的高效性和相场法的准确性,成功实现了大尺度铝合金凝固前沿枝晶形貌的预测.

    对于蒙特卡罗法,该模型并不考虑凝固过程中的枝晶形貌、元素偏聚和过冷等因素,目前被广泛地用于晶粒长大、再结晶等晶粒演化行为的数值模拟. Zhang等人[36]利用该模型成功实现了12%Cr铁素体不锈钢在激光-电弧复合焊条件下热影响区晶粒的模拟,并发现顶部区域热影响区的晶粒尺寸要大于根部. Gleason等人[37-38]利用该方法针对激光冲击焊接过程中1100铝合金和304不锈钢的不均匀的界面微观组织进行了仿真,如图9所示,实现了对不同屈服面、层错能以及晶界滑动条件下的晶粒伸长行为的预测.

    图  9  有、无晶粒模型的铝/钢接触界面的温度与等效应变分布情况
    Figure  9.  Comparison of the localized temperature and equivalent plastic strain sampled along the contact interface in both inhomogeneous (grain) and homogeneous (no grain) models

    与传统的弧焊相比,激光焊对焊接残余应力和变形的影响主要体现在制造工艺方面[39],以下将对近几年来在激光焊接残余应力方面取得的进展进行介绍. Sun等人[40]以Q235钢平板对接接头为研究对象,采用试验手段和热-弹-塑性有限元方法研究了激光焊和电弧焊的温度场、残余应力与焊接变形. 图10是激光焊(Case A)与电弧焊(Case C)得到的焊缝中央位置的温度循环曲线,可见激光焊的熔化面积小,而且熔深贯穿整个板厚,而电弧焊尽管熔化面积更大,激光焊的加热速度更快,峰值温度更高,高温停留时间更短而且冷却速度也更快.

    图  10  激光焊与电弧焊焊缝中央位置温度循环曲线
    Figure  10.  Thermal cycle at the weld center of laser and arc welding process

    图11是薄板接头中央断面上的纵向残余应力与横向残余应力的数值模拟结果,可见在激光焊条件下接头的上、下表面的纵向残余应力的大小与分布几乎完全一致,这是因为激光焊产生的熔化区域在板厚方向分布较均匀所致,拉伸残余应力峰值与材料常温屈服强度基本一致. 在电弧焊条件下的横向残余应力的峰值要远高于激光焊,单就焊接残余应力的峰值大小而言,激光焊并不能有效减缓残余应力,该研究结果也得到了其它学者的支持[41-42].

    图  11  中央截面上的残余应力分布
    Figure  11.  Residual stress distribution on the central section. (a) longitudinal residual stress; (b) transverse residual stress

    在激光厚板焊接残余应力方面,Xu等人[43]模拟比较了板厚为12 mm的Q460钢在激光焊和多层多道气体保护焊条件下接头的残余应力,发现激光焊接头的高拉伸纵向残余应力范围要明显小于气体保护焊接头,但峰值应力没有明显的差异. Yan等人[44]研究了板厚为10 mm 的316L不锈钢在激光条件下的残余应力,如图12所示,由于板厚较厚,横向残余应力的大小与薄板接头相比有显著增加. Deng等人[45]采用考虑加工硬化及退火软化的热-弹-塑性有限元方法研究了SUS304管-管激光焊对接接头的残余应力,并讨论了由固溶处理引起的初期残余应力对焊接残余应力的影响.

    图  12  316L对接接头的焊接残余应力分布
    Figure  12.  Residual stress distribution of welded joint. (a) mises stress; (b) transverse stress; (c) longitudinal stress

    Elmesalamy等人[46]以板厚为10和20 mm 316L钢对接接头为研究对象,采用轮廓法测量了多道窄间隙激光焊对接接头和多层多道TIG焊对接接头的残余应力. 图13是距焊接接头上表面1.5 mm位置的纵向残余应力分布,可见窄间隙激光焊和多层多道TIG焊产生的峰值应力前者为310 MPa,而后者为520 MPa,且激光焊纵向高拉伸残余应力区域明显较窄,故窄间隙激光焊方法可能是一个控制残余应力的有效途径,且多道窄间隙激光焊接方法将是用于控制加工硬化显著材料厚板接头焊接残余应力一种有效的方法.

    图  13  距上表面1.5 mm处的纵向残余应力分布
    Figure  13.  Longitudinal residual stress distribution at the location of 1.5 mm away from the upper surface

    近年来,激光焊残余应力的报道在铝合金、镁合金、钛合金[47]以及异种金属激光熔钎焊[48]方面也越来越多.

    (1) 在激光焊缝成形模拟方面,匙孔的动态行为决定了焊接过程的稳定性,现有数值模型已经实现了匙孔壁与激光能量的实时耦合,但是激光束与等离子体(羽烟)的耦合行为很少涉及,考虑金属蒸气流动行为与激光热源的相互作用,是激光焊接过程建模发展的方向.

    (2) 在激光焊缝组织模拟方面,熔池的流动对元素宏观偏析行为方面的模拟结果取决于界面参数的选取与优化;而微观组织方面,进一步完善3种模型需要准确获得新晶粒形核的相关参数十分重要,实现宏观与微观组织多尺度模拟还具有很高的挑战性.

    (3) 在激光焊接残余应力方面,对于低合金高强钢及超高强钢而言,如何建立完备的“热-组织-力学”多场耦合模型,高精度的模拟激光焊条件下残余应力将是一个挑战性的课题. 此外,对加工硬化较显著材料优化工艺降低残余应力、降低累积塑性应变和减缓敏化程度是值得深入探索的方向.

  • 图  1   背部驼峰形成时的小孔行为

    Figure  1.   Behavior of keyhole when the root humping is formed

    图  2   不同震动频率下的激光焊缝成形情况

    Figure  2.   Laser weld formation under different vibration frequency

    图  3   匙孔内蒸气羽烟行为及压力分布

    Figure  3.   Evolution of vapor plume velocity inside the transient keyhole and relative pressure

    图  4   气泡向气孔的演变过程

    Figure  4.   Evolution process from bubble to pore. (a) 0.20 s; (b) 0.25 s; (c) 0.30 s; (d) 0.35 s; (e) 0.40 s; (f) 0.50 s

    图  5   铝合金激光焊接飞溅产生过程

    Figure  5.   Formation process of spatter

    图  6   锌蒸气在匙孔中的流动行为

    Figure  6.   Fluid flow of zinc vapor

    图  7   单道激光扫描焊缝截面元素分布模拟结果

    Figure  7.   Alloy distribution for single-track laser scan. (a) experimental result of element distribution; (b) simulation result of element distribution

    图  8   溶质分布及晶粒形貌模拟结果

    Figure  8.   Simulation results of solute distribution and microscopic morphologies. (a) solute distribution in columnar growth of Al-4.0%Cu alloy; (b) solute distribution in columnar growth of Al-4.0%Mg alloy; (c) microscopic morphologies with different pre-heating temperatures in a single track

    图  9   有、无晶粒模型的铝/钢接触界面的温度与等效应变分布情况

    Figure  9.   Comparison of the localized temperature and equivalent plastic strain sampled along the contact interface in both inhomogeneous (grain) and homogeneous (no grain) models

    图  10   激光焊与电弧焊焊缝中央位置温度循环曲线

    Figure  10.   Thermal cycle at the weld center of laser and arc welding process

    图  11   中央截面上的残余应力分布

    Figure  11.   Residual stress distribution on the central section. (a) longitudinal residual stress; (b) transverse residual stress

    图  12   316L对接接头的焊接残余应力分布

    Figure  12.   Residual stress distribution of welded joint. (a) mises stress; (b) transverse stress; (c) longitudinal stress

    图  13   距上表面1.5 mm处的纵向残余应力分布

    Figure  13.   Longitudinal residual stress distribution at the location of 1.5 mm away from the upper surface

  • [1] 武传松, 孟祥萌, 陈姬, 等. 熔焊热过程与熔池行为数值模拟的研究进展[J]. 机械工程学报, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001

    Wu Chuansong, Meng Xiangmeng, Chen Ji, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding[J]. Journal of Mechanical Engineering, 2018, 54(2): 1 − 15. doi: 10.3901/JME.2018.02.001

    [2] 裴莹蕾, 单际国, 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416

    Pei Yinglei, Shan Jiguo, Ren Jialie. Study of humping tendency and affecting factors in high speed laser welding of stainless steel sheet[J]. Acta Metallurgica Sinica, 2012, 48(12): 1431 − 1436. doi: 10.3724/SP.J.1037.2012.00416

    [3]

    Deng S, Wang H P, Lu F, et al. Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels[J]. International Journal of Heat and Mass Transfer, 2019, 140: 269 − 280. doi: 10.1016/j.ijheatmasstransfer.2019.06.009

    [4]

    Zhang C, Yu Y, Chen C, et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382.

    [5]

    Han Y, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.

    [6]

    Otto A, Patschger A, Seiler M. Numerical and experimental investigations of humping phenomena in laser micro welding[J]. Physics Procedia, 2016, 83: 1415 − 1423. doi: 10.1016/j.phpro.2016.09.004

    [7]

    Zhang M, Liu T, Hu R, et al. Understanding root humping in high-power laser welding of stainless steels: a combination approach[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11): 5353 − 5364.

    [8]

    Bachmann M, Avilov V, Gumenyuk A, et al. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support[J]. Journal of Physics D:Applied Physics, 2011, 45(3): 035201.

    [9]

    Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578 − 591.

    [10]

    Cho W I, Woizeschke P. Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120623.

    [11]

    Zhao H, Niu W, Zhang B, et al. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding[J]. Journal of Physics D:Applied Physics, 2011, 44(48): 485302. doi: 10.1088/0022-3727/44/48/485302

    [12]

    Pang S, Chen X, Zhou J, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47 − 58. doi: 10.1016/j.optlaseng.2015.05.003

    [13]

    Pang S, Chen X, Shao X, et al. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity[J]. Optics and Lasers in Engineering, 2016, 82: 28 − 40.

    [14]

    Lu F, Li X, Li Z, et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1143 − 1152. doi: 10.1016/j.ijheatmasstransfer.2015.07.041

    [15]

    Li X, Lu F, Cui H, et al. Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 241 − 254.

    [16]

    Huang L, Hua X, Wu D, et al. Effect of magnesium content on keyhole-induced porosity formation and distribution in aluminum alloys laser welding[J]. Journal of Manufacturing Processes, 2018, 33: 43 − 53. doi: 10.1016/j.jmapro.2018.04.023

    [17]

    Huang L, Hua X, Wu D, et al. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel[J]. Journal of Materials Processing Technology, 2018, 252: 421 − 431.

    [18]

    Shi L, Li X, Jiang L, et al. Numerical study of keyhole-induced porosity suppression mechanism in laser welding with beam oscillation[J]. Science and Technology of Welding and Joining, 2021, 26(5): 349 − 355. doi: 10.1080/13621718.2021.1913562

    [19]

    Zhang C, Li X, Gao M. Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool[J]. Journal of Materials Research and Technology, 2020, 9(4): 9271 − 9282.

    [20]

    Hugger F, Hofmann K, Kohl S, et al. Spatter formation in laser beam welding using laser beam oscillation[J]. Welding in the World, 2015, 59(2): 165 − 172. doi: 10.1007/s40194-014-0189-9

    [21]

    Chang B, Blackburn J, Allen C, et al. Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9): 1769 − 1776.

    [22]

    Wu D, Hua X, Huang L, et al. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition[J]. Optics & Laser Technology, 2018, 100: 157 − 164.

    [23]

    Hao Y, Chen N, Wang H P, et al. Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels[J]. Journal of Materials Processing Technology, 2021, 298: 117282.

    [24]

    Hao Y, Wang H P, Sun Y, et al. The evaporation behavior of zinc and its effect on spattering in laser overlap welding of galvanized steels[J]. Journal of Materials Processing Technology, 2022, 306: 117625. doi: 10.1016/j.jmatprotec.2022.117625

    [25]

    Hao Y, Li L, Sun Y, et al. Dynamic behavior of keyhole and molten pool under different oscillation paths for galvanized steel laser welding[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122947. doi: 10.1016/j.ijheatmasstransfer.2022.122947

    [26]

    Qi Y, Chen G, Liu D. Droplet spatter suppression in laser lap welding of galvanized sheets using additional coaxial annular laser source[J]. Optics & Laser Technology, 2022, 149: 107902.

    [27]

    Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119458. doi: 10.1016/j.ijheatmasstransfer.2020.119458

    [28]

    Yao L, Huang S, Ramamurty U, et al. On the formation of "Fish-scale" morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys[J]. Acta Materialia, 2021, 220: 117331.

    [29]

    Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys[J]. Acta Materialia, 2012, 60(4): 1633 − 1646. doi: 10.1016/j.actamat.2011.12.009

    [30]

    Mi G, Xiong L, Wang C, et al. Two-dimensional phase-field simulations of competitive dendritic growth during laser welding[J]. Materials & Design, 2019, 181: 107980.

    [31]

    Geng S, Jiang P, Shao X, et al. Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study[J]. Scripta Materialia, 2018, 150: 120 − 124. doi: 10.1016/j.scriptamat.2018.03.013

    [32]

    Geng S, Jiang P, Shao X, et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study[J]. Acta Materialia, 2018, 160: 85 − 96. doi: 10.1016/j.actamat.2018.08.057

    [33]

    Ao X, Xia H, Liu J, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Materials & Design, 2020, 185: 108230.

    [34]

    Shi R, Khairallah S A, Roehling T T, et al. Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy[J]. Acta Materialia, 2020, 184: 284 − 305. doi: 10.1016/j.actamat.2019.11.053

    [35]

    Liu S, Hong K M, Shin Y C. A novel 3D cellular automata-phase field model for computationally efficient dendrite evolution during bulk solidification[J]. Computational Materials Science, 2021, 192: 110405. doi: 10.1016/j.commatsci.2021.110405

    [36]

    Zhang Z, Wu C. Monte Carlo simulation of grain growth in heat-affected zone of 12wt.% Cr ferritic stainless steel hybrid welds[J]. Computational Materials Science, 2012, 65: 442 − 449. doi: 10.1016/j.commatsci.2012.07.040

    [37]

    Gleason G, Sunny S, Mathews R, et al. Numerical investigation of the transient interfacial material behavior during laser impact welding[J]. Scripta Materialia, 2022, 208: 114325.

    [38]

    Sunny S, Gleason G, Mathews R, et al. Simulation of laser impact welding for dissimilar additively manufactured foils considering influence of inhomogeneous microstructure[J]. Materials & Design, 2021, 198: 109372.

    [39] 桂晓燕, 张艳喜, 游德勇, 等. 激光电弧复合焊接顺序对304不锈钢T形接头影响的模拟试验分析[J]. 焊接学报, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005

    Gui Xiaoyan, Zhang Yanxi, You Deyong, et al. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. Transactions of the China Welding Institution, 2021, 42(12): 34 − 39. doi: 10.12073/j.hjxb.20210324005

    [40]

    Sun J, Liu X, Tong Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding[J]. Materials & Design, 2014, 63: 519 − 530.

    [41] 逯世杰, 郑颖, 王虎, 等. SUS304 不锈钢薄板激光焊与惰性气体保护焊的焊接变形和残余应力的比较[J]. 激光杂志, 2019, 40(11): 144 − 149.

    Lu Shijie, Zheng Ying, Wang Hu, et al. A comparative study on welding deformations and residual stress distribution of SUS304 stainless steel induced by laser beam welding and metal inert-gas welding[J]. Laser Journal, 2019, 40(11): 144 − 149.

    [42]

    Huang H, Tsutsumi S, Wang J, et al. High performance computation of residual stress and distortion in laser welded 301L stainless sheets[J]. Finite Elements in Analysis and Design, 2017, 135: 1 − 10. doi: 10.1016/j.finel.2017.07.004

    [43]

    Xu G, Pan H, Liu P, et al. Finite element analysis of residual stress in hybrid laser-arc welding for butt joint of 12 mm-thick steel plate[J]. Welding in the World, 2018, 62(2): 289 − 300. doi: 10.1007/s40194-017-0545-7

    [44]

    Yan S, Meng Z, Chen B, et al. Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel[J]. Optics & Laser Technology, 2022, 145: 107493.

    [45]

    Deng D, Kiyoshima S. Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J]. Nuclear Engineering and Design, 2010, 240(4): 688 − 696. doi: 10.1016/j.nucengdes.2009.11.049

    [46]

    Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 113: 49 − 59. doi: 10.1016/j.ijpvp.2013.11.002

    [47] 窦恩惠. 铝锂合金T型接头双光束激光焊接工艺及变形控制[D]. 天津: 天津大学, 2018.

    Dou Enhui. Two-side and two-beam laser welding process and deformation control of aluminum-lithium alloy T-welded joints[D]. Tianjin: Tianjin University, 2018.

    [48]

    Li C, Ding F, Yu X, et al. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 692 − 700. doi: 10.1016/S1003-6326(19)64979-4

  • 期刊类型引用(5)

    1. 任成龙. 激光切割工艺对焊接残余应力预测精度影响. 焊接技术. 2025(02): 75-78 . 百度学术
    2. 王磊,杜劭峰,李红星,刘港,张磊,彭勇. 钛合金蒙皮-骨架结构激光焊接变形规律模拟研究. 兵工学报. 2025(03): 266-275 . 百度学术
    3. 刘图三,李润,李锐斌,张航,邹宇航,李欢. NiTi多层板激光焊接模拟设计. 化学工程与装备. 2024(08): 7-11+43 . 百度学术
    4. 崔爱永,赵佳磊,刘浩东,魏华凯,孙伟奇,王振泽. 不同热处理工艺对TC4钛合金曲线路径激光填丝焊接组织与性能的影响研究. 新技术新工艺. 2024(12): 63-69 . 百度学术
    5. 张月来,何清和,朱嘉翌,梁归慧,曾炯萌,邓德安. 机车车辆大型长直弦梁焊接变形预测. 焊接学报. 2023(09): 106-112+135 . 本站查看

    其他类型引用(6)

图(13)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  54
  • PDF下载量:  122
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-08-02
  • 刊出日期:  2022-08-24

目录

/

返回文章
返回