Abstract:
In order to obtain high-quality laser cladding fabricated parts, a process optimization method targeting macroscopic and microscopic characteristics is proposed for 316L stainless steel as an example, based on the problem that existing studies only target geometric morphology for optimization.Firstly, an empirical statistical model of the geometric morphology and microstructure of the cladding layer and the main process parameters is constructed through full factorial design and regression analysis, and the influence of process parameters on the geometric morphology and the average intercept of microscopic grain is discussed. Then, the geometric morphology and the average grain intercept are selected as the indicators for evaluating the quality of cladding, and the optimal process parameters and suitable process range are determined by the composite desirability function. Finally, the feasibility and effectiveness of the method are verified. The results show that under the condition of the best process parameters, the statistical model of macroscopic and microscopic characteristics has high prediction accuracy. The prepared cladding samples not only have higher microhardness, but also have excellent tensile properties: the yield strength is 439 MPa, the tensile strength is 751 MPa, and the elongation is 26%. The process optimization of macroscopic and microscopic characteristics is achieved.