高级检索

316L不锈钢激光熔覆宏微观特征优化

叶超, 侯亮, 陈云, 徐杨, 刘文志, 王振忠

叶超, 侯亮, 陈云, 徐杨, 刘文志, 王振忠. 316L不锈钢激光熔覆宏微观特征优化[J]. 焊接学报, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001
引用本文: 叶超, 侯亮, 陈云, 徐杨, 刘文志, 王振忠. 316L不锈钢激光熔覆宏微观特征优化[J]. 焊接学报, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001
YE Chao, HOU Liang, CHEN Yun, XU Yang, LIU Wenzhi, WANG Zhenzhong. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001
Citation: YE Chao, HOU Liang, CHEN Yun, XU Yang, LIU Wenzhi, WANG Zhenzhong. Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 8-16. DOI: 10.12073/j.hjxb.20220426001

316L不锈钢激光熔覆宏微观特征优化

基金项目: 国家自然科学基金资助项目(51905461)
详细信息
    作者简介:

    叶超,博士研究生;主要研究方向为增减材复合制造;Email:136620990@qq.com

    通讯作者:

    陈云,博士,助理教授;Email:yun.chen@xmu.edu.cn.

  • 中图分类号: TG456.7; TN249

Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding

  • 摘要: 为了获得高质量激光熔覆制件,针对现有研究仅以宏观几何形貌为优化目标的问题,以316L不锈钢为例,提出一种以宏微观特征为目标的工艺优化方法. 首先通过全析因设计和回归分析构建熔覆层宏观几何形貌及微观组织同主要工艺参数的经验统计模型,探讨了工艺参数对几何形貌及微观晶粒平均截距的影响规律. 然后选用几何形貌和晶粒平均截距作为评价熔覆成形质量的指标,采用复合合意性函数确定了最佳工艺参数和合适工艺窗口,最后验证了该方法可行性和有效性. 结果表明,在选择最佳工艺参数的条件下,宏微观特征的统计模型具有较高预测精度,制备的熔覆样件不仅具更高的显微硬度,还具备良好的拉伸性能:屈服强度为439 MPa,抗拉极限为751 MPa,断后伸长率为26%,实现了宏微观特征的优化.
    Abstract: In order to obtain high-quality laser cladding fabricated parts, a process optimization method targeting macroscopic and microscopic characteristics is proposed for 316L stainless steel as an example, based on the problem that existing studies only target geometric morphology for optimization.Firstly, an empirical statistical model of the geometric morphology and microstructure of the cladding layer and the main process parameters is constructed through full factorial design and regression analysis, and the influence of process parameters on the geometric morphology and the average intercept of microscopic grain is discussed. Then, the geometric morphology and the average grain intercept are selected as the indicators for evaluating the quality of cladding, and the optimal process parameters and suitable process range are determined by the composite desirability function. Finally, the feasibility and effectiveness of the method are verified. The results show that under the condition of the best process parameters, the statistical model of macroscopic and microscopic characteristics has high prediction accuracy. The prepared cladding samples not only have higher microhardness, but also have excellent tensile properties: the yield strength is 439 MPa, the tensile strength is 751 MPa, and the elongation is 26%. The process optimization of macroscopic and microscopic characteristics is achieved.
  • 图  1   熔覆截面宏观几何形貌示意图

    Figure  1.   Schematic diagram of macro geometric morphology of cladding section

    图  2   直线截点法示意图

    Figure  2.   Diagram of the straight-line intersection method

    图  3   激光熔覆加工设备

    Figure  3.   Laser cladding processing device. (a) laser cladding processing system; (b) spindle

    图  4   拉伸试样示意图(mm)

    Figure  4.   Schematic diagram of tensile specimen. (a) specimen preparation; (b) sample size; (c) tensile specimen

    图  5   熔覆层横截面

    Figure  5.   Cladding cross section

    图  6   因子对宽高比的影响

    Figure  6.   Effect of factors on aspect ratio

    图  7   因子对接触角的影响

    Figure  7.   Effect of factors on contact angle

    图  8   因子对稀释率的影响

    Figure  8.   Effect of factors on dilution rate

    图  9   因子对晶粒平均截距的影响

    Figure  9.   Effect of factors on the average intercept of grains

    图  10   优化等值线图

    Figure  10.   Optimized contour maps

    图  11   优化组熔覆层微观组织结构

    Figure  11.   Microstructure of cladding layer for optimization. (a) cladding layer of optimization group; (b) bottom region; (c) central region; (d) right region

    图  12   试验组19熔覆层微观组织结构

    Figure  12.   Microstructure of cladding layer for experimental No.19. (a) cladding layer of No.19 experiment; (b) left region; (c) bottom region; (d) right region

    图  13   维氏显微硬度

    Figure  13.   Vickers microhardness

    图  14   拉伸性能

    Figure  14.   Tensile properties

    图  15   多层多道试样的横截面

    Figure  15.   Cross-section of multi-layer specimen. (a) cross section of the sample; (b) partial enlarged view of the section

    表  1   工艺参数及其因子水平

    Table  1   Process parameters and factor levels

    水平激光功率P/W扫描速度v/(mm·min−1)送粉量Q/(g·min−1)粉末离焦量D/mm
    11 40070015.51.5
    01 200600141.0
    −11 00050012.50.5
    下载: 导出CSV

    表  2   因子水平及响应结果

    Table  2   Factor levels and response results

    运行序工艺参数响应值
    激光功率P /W扫描速度V /(mm·min−1)送粉量Q /(g·min−1)粉离焦量D /mm宽高比λ接触角θ /(°)稀释率κ晶粒平均截距l/μm
    11 00050015.50.52.443101.5980.0597.438
    21 20060014.01.03.680122.9520.1934.918
    31 00050012.51.53.703123.2560.1414.000
    41 40050012.51.54.187128.9300.3535.806
    51 40050015.51.53.651122.5690.2506.923
    61 40070012.50.54.912134.6870.3495.085
    71 40070012.51.55.569141.8890.3534.615
    81 40050015.50.53.205115.8720.2757.500
    91 20060014.01.03.912125.9470.2005.769
    101 00070015.51.53.495120.8400.0374.983
    111 40070015.50.54.085127.8290.2204.451
    121 00050015.51.52.950111.7230.0636.383
    131 20060014.01.03.575123.4480.2125.085
    141 00070012.51.54.555132.5880.0914.110
    151 00070012.50.54.149128.5240.0945.263
    161 20060014.01.03.912125.9470.2005.769
    171 00070015.50.53.073114.1830.0395.357
    181 40050012.50.53.573121.5290.3165.488
    191 00050012.50.52.579104.4220.0955.769
    201 40070015.51.54.124128.5520.2645.625
    下载: 导出CSV

    表  3   方差分析结果

    Table  3   Results of ANOVA

    宽高比 λp接触角 θp稀释率 κp晶粒平均截距 lp
    模型0模型0模型0模型0
    P0P0P0P0.242
    V0V0Q0V0
    Q0Q0Q0
    D0D0D0.048
    VQ0VD0.048PD0.019
    VD0.045VQ0.006
    QD0.020
    R2 = 0.980Adj. R2 = 0.969R2 = 0.938Adj. R2 = 0.916R2 = 0.968Adj. R2 = 0.965R2 = 0.856Adj. R2 = 0.789
    Pred. R2 = 0.943Pred. R2 = 0.856Pred. R2 = 0.955Pred. R2 = 0.636
    下载: 导出CSV

    表  4   规范化的各响应回归系数

    Table  4   Normalized regression coefficients for responses

    回归系数对应变量激光功率P*扫描速度V*送粉量Q*粉离焦量D*扫描速度送粉量V*Q*扫描速度粉离焦量V*D*送粉量粉离焦量Q*D*激光功率粉离焦量P*D*
    宽高比 λ0.3970.479−0.3880.263−0.163−0.073−0.087
    接触角 θ5.2956.200−4.5413.856−1.526
    稀释率 κ0.110−0.036
    晶粒平均截距 l0.137−0.6140.533−0.244−0.3650.300
    下载: 导出CSV

    表  5   优化结果和试验

    Table  5   Optimization results and validation experiment

    激光功率P/W扫描速度v /(mm·min−1)送粉量Q/(g·min−1)粉离焦量D/mm宽高比λ接触角θ/(°)稀释率κ(%)晶粒平均截距l/μm合意性结果
    预测值1 400.00503.1312.500.503.50121.260.345.310.79优化
    1 350.00550.0012.500.503.74123.550.315.230.53
    1 350.00516.9212.500.503.49121.000.315.310.56
    1 400.00500.0012.500.504.00124.700.315.57
    误差δ(%)12.502.769.684.67
    下载: 导出CSV
  • [1] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151.

    Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151.

    [2] 刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002

    Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002

    [3]

    Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287 − 106298.

    [4]

    Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215 − 107228.

    [5]

    Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model for laser powder-fed additive manufacturing[J]. Additive Manufacturing, 2016, 12(partA): 90 − 99.

    [6]

    Ertay D S, Vlasea M, Erkorkmaz K. Thermomechanical and geometry model for directed energy deposition with 2d/3d toolpaths[J]. Additive Manufacturing, 2020, 35: 1 − 42.

    [7]

    Ansari M, Shoja Razavi R, Barekat M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J]. Optics & Laser Technology, 2016, 86: 136 − 144.

    [8]

    Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics & Laser Technology, 2017, 97: 180 − 186.

    [9]

    Nabhani M, Razavi R S, Barekat M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. Optics & Laser Technology, 2018, 100: 265 − 271.

    [10]

    Wen P, Feng Z, Zheng S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel[J]. Optics & Laser Technology, 2015, 65: 180 − 188.

    [11]

    Sun Y, Hao M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018

    [12]

    Alam M K, Urbanic R J, Nazemi N, et al. Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 397 − 413.

    [13]

    Zhang Hui, Zou Yong, Zou Zengda, et al. Comparative study on continuous and pulsed wave fiber laser cladding in-situ titanium-vanadium carbides reinforced Fe-based composite layer[J]. Materials Letters, 2015, 139: 255 − 257. doi: 10.1016/j.matlet.2014.10.102

    [14]

    Li Ruidi, Yuan Tiechui, Qiua Zili, et al. Nanostructured Co-Cr-Fe alloy surface layer fabricated by combination of laser clad and friction stir processing[J]. Surface & Coatings Technology, 2014, 258: 412 − 425.

    [15]

    Xie S, Li R, Yuan T, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics Laser Technology, 2018, 337: 426 − 433.

    [16]

    Montero-Sistiaga Maria L, Godino-Martinez Miguel, Boschmans Kurt, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018, 23: 402 − 410. doi: 10.1016/j.addma.2018.08.028

    [17]

    Zhang Z, Farahmand P, Kovacevic R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109: 686 − 699.

    [18]

    Zhang D, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91 − 95. doi: 10.1038/s41586-019-1783-1

    [19]

    Alali M, Todd I, Wynne B P. Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel[J]. Materials & Design, 2017, 130: 488 − 500.

    [20]

    Erinosho M F, Akinlabi E T. Central composite design on the volume of laser metal deposited Ti6Al4V and Cu[J]. Materiali in Tehnologije, 2017, 51(3): 419 − 426. doi: 10.17222/mit.2016.019

    [21]

    Ma Pengzhao, Wu Yu, Zhang Pengju, et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 957 − 969.

    [22]

    Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering, 2019, 751(28): 183 − 190.

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(15)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-03-05
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回