Research on optimization of macroscopic and microscopic characteristics of 316L stainless steel by laser cladding
-
摘要: 为了获得高质量激光熔覆制件,针对现有研究仅以宏观几何形貌为优化目标的问题,以316L不锈钢为例,提出一种以宏微观特征为目标的工艺优化方法. 首先通过全析因设计和回归分析构建熔覆层宏观几何形貌及微观组织同主要工艺参数的经验统计模型,探讨了工艺参数对几何形貌及微观晶粒平均截距的影响规律. 然后选用几何形貌和晶粒平均截距作为评价熔覆成形质量的指标,采用复合合意性函数确定了最佳工艺参数和合适工艺窗口,最后验证了该方法可行性和有效性. 结果表明,在选择最佳工艺参数的条件下,宏微观特征的统计模型具有较高预测精度,制备的熔覆样件不仅具更高的显微硬度,还具备良好的拉伸性能:屈服强度为439 MPa,抗拉极限为751 MPa,断后伸长率为26%,实现了宏微观特征的优化.Abstract: In order to obtain high-quality laser cladding fabricated parts, a process optimization method targeting macroscopic and microscopic characteristics is proposed for 316L stainless steel as an example, based on the problem that existing studies only target geometric morphology for optimization.Firstly, an empirical statistical model of the geometric morphology and microstructure of the cladding layer and the main process parameters is constructed through full factorial design and regression analysis, and the influence of process parameters on the geometric morphology and the average intercept of microscopic grain is discussed. Then, the geometric morphology and the average grain intercept are selected as the indicators for evaluating the quality of cladding, and the optimal process parameters and suitable process range are determined by the composite desirability function. Finally, the feasibility and effectiveness of the method are verified. The results show that under the condition of the best process parameters, the statistical model of macroscopic and microscopic characteristics has high prediction accuracy. The prepared cladding samples not only have higher microhardness, but also have excellent tensile properties: the yield strength is 439 MPa, the tensile strength is 751 MPa, and the elongation is 26%. The process optimization of macroscopic and microscopic characteristics is achieved.
-
Keywords:
- laser cladding /
- geometric morphology /
- microstructure /
- process optimization
-
-
表 1 工艺参数及其因子水平
Table 1 Process parameters and factor levels
水平 激光功率P/W 扫描速度v/(mm·min−1) 送粉量Q/(g·min−1) 粉末离焦量D/mm 1 1 400 700 15.5 1.5 0 1 200 600 14 1.0 −1 1 000 500 12.5 0.5 表 2 因子水平及响应结果
Table 2 Factor levels and response results
运行序 工艺参数 响应值 激光功率P /W 扫描速度V /(mm·min−1) 送粉量Q /(g·min−1) 粉离焦量D /mm 宽高比λ 接触角θ /(°) 稀释率κ 晶粒平均截距l/μm 1 1 000 500 15.5 0.5 2.443 101.598 0.059 7.438 2 1 200 600 14.0 1.0 3.680 122.952 0.193 4.918 3 1 000 500 12.5 1.5 3.703 123.256 0.141 4.000 4 1 400 500 12.5 1.5 4.187 128.930 0.353 5.806 5 1 400 500 15.5 1.5 3.651 122.569 0.250 6.923 6 1 400 700 12.5 0.5 4.912 134.687 0.349 5.085 7 1 400 700 12.5 1.5 5.569 141.889 0.353 4.615 8 1 400 500 15.5 0.5 3.205 115.872 0.275 7.500 9 1 200 600 14.0 1.0 3.912 125.947 0.200 5.769 10 1 000 700 15.5 1.5 3.495 120.840 0.037 4.983 11 1 400 700 15.5 0.5 4.085 127.829 0.220 4.451 12 1 000 500 15.5 1.5 2.950 111.723 0.063 6.383 13 1 200 600 14.0 1.0 3.575 123.448 0.212 5.085 14 1 000 700 12.5 1.5 4.555 132.588 0.091 4.110 15 1 000 700 12.5 0.5 4.149 128.524 0.094 5.263 16 1 200 600 14.0 1.0 3.912 125.947 0.200 5.769 17 1 000 700 15.5 0.5 3.073 114.183 0.039 5.357 18 1 400 500 12.5 0.5 3.573 121.529 0.316 5.488 19 1 000 500 12.5 0.5 2.579 104.422 0.095 5.769 20 1 400 700 15.5 1.5 4.124 128.552 0.264 5.625 表 3 方差分析结果
Table 3 Results of ANOVA
宽高比 λ p 值 接触角 θ p 值 稀释率 κ p 值 晶粒平均截距 l p 值 模型 0 模型 0 模型 0 模型 0 P 0 P 0 P 0 P 0.242 V 0 V 0 Q 0 V 0 Q 0 Q 0 — — Q 0 D 0 D 0 — — D 0.048 VQ 0 VD 0.048 — — PD 0.019 VD 0.045 — — — — VQ 0.006 QD 0.020 — — — — — — R2 = 0.980 Adj. R2 = 0.969 R2 = 0.938 Adj. R2 = 0.916 R2 = 0.968 Adj. R2 = 0.965 R2 = 0.856 Adj. R2 = 0.789 — Pred. R2 = 0.943 — Pred. R2 = 0.856 — Pred. R2 = 0.955 — Pred. R2 = 0.636 表 4 规范化的各响应回归系数
Table 4 Normalized regression coefficients for responses
回归系数对应变量 激光功率P* 扫描速度V* 送粉量Q* 粉离焦量D* 扫描速度送粉量V*Q* 扫描速度粉离焦量V*D* 送粉量粉离焦量Q*D* 激光功率粉离焦量P*D* 宽高比 λ 0.397 0.479 −0.388 0.263 −0.163 −0.073 −0.087 — 接触角 θ 5.295 6.200 −4.541 3.856 — −1.526 — — 稀释率 κ 0.110 — −0.036 — — — — — 晶粒平均截距 l 0.137 −0.614 0.533 −0.244 −0.365 — — 0.300 表 5 优化结果和试验
Table 5 Optimization results and validation experiment
激光功率P/W 扫描速度v /(mm·min−1) 送粉量Q/(g·min−1) 粉离焦量D/mm 宽高比λ 接触角θ/(°) 稀释率κ(%) 晶粒平均截距l/μm 合意性 结果 预测值 1 400.00 503.13 12.50 0.50 3.50 121.26 0.34 5.31 0.79 优化 1 350.00 550.00 12.50 0.50 3.74 123.55 0.31 5.23 0.53 — 1 350.00 516.92 12.50 0.50 3.49 121.00 0.31 5.31 0.56 — 1 400.00 500.00 12.50 0.50 4.00 124.70 0.31 5.57 — — 误差δ(%) — — — — 12.50 2.76 9.68 4.67 — — -
[1] 刘伟, 李能, 周标, 等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报, 2019, 55(20): 128 − 151. Liu Wei, Li Neng, Zhou Biao, et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 2019, 55(20): 128 − 151.
[2] 刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002 Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020, 41(7): 65 − 70. doi: 10.12073/j.hjxb.20200508002
[3] Gao J, Wu C, Hao Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287 − 106298.
[4] Gao S, Feng Y, Wang J, et al. Molten pool characteristics of a nickel-titanium shape memory alloy for directed energy deposition[J]. Optics & Laser Technology, 2021, 142: 107215 − 107228.
[5] Huang Y, Khamesee M B, Toyserkani E. A comprehensive analytical model for laser powder-fed additive manufacturing[J]. Additive Manufacturing, 2016, 12(partA): 90 − 99.
[6] Ertay D S, Vlasea M, Erkorkmaz K. Thermomechanical and geometry model for directed energy deposition with 2d/3d toolpaths[J]. Additive Manufacturing, 2020, 35: 1 − 42.
[7] Ansari M, Shoja Razavi R, Barekat M. An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J]. Optics & Laser Technology, 2016, 86: 136 − 144.
[8] Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J]. Optics & Laser Technology, 2017, 97: 180 − 186.
[9] Nabhani M, Razavi R S, Barekat M. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. Optics & Laser Technology, 2018, 100: 265 − 271.
[10] Wen P, Feng Z, Zheng S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel[J]. Optics & Laser Technology, 2015, 65: 180 − 188.
[11] Sun Y, Hao M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser[J]. Optics and Lasers in Engineering, 2012, 50(7): 985 − 995. doi: 10.1016/j.optlaseng.2012.01.018
[12] Alam M K, Urbanic R J, Nazemi N, et al. Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 397 − 413.
[13] Zhang Hui, Zou Yong, Zou Zengda, et al. Comparative study on continuous and pulsed wave fiber laser cladding in-situ titanium-vanadium carbides reinforced Fe-based composite layer[J]. Materials Letters, 2015, 139: 255 − 257. doi: 10.1016/j.matlet.2014.10.102
[14] Li Ruidi, Yuan Tiechui, Qiua Zili, et al. Nanostructured Co-Cr-Fe alloy surface layer fabricated by combination of laser clad and friction stir processing[J]. Surface & Coatings Technology, 2014, 258: 412 − 425.
[15] Xie S, Li R, Yuan T, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics Laser Technology, 2018, 337: 426 − 433.
[16] Montero-Sistiaga Maria L, Godino-Martinez Miguel, Boschmans Kurt, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018, 23: 402 − 410. doi: 10.1016/j.addma.2018.08.028
[17] Zhang Z, Farahmand P, Kovacevic R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 2016, 109: 686 − 699.
[18] Zhang D, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91 − 95. doi: 10.1038/s41586-019-1783-1
[19] Alali M, Todd I, Wynne B P. Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel[J]. Materials & Design, 2017, 130: 488 − 500.
[20] Erinosho M F, Akinlabi E T. Central composite design on the volume of laser metal deposited Ti6Al4V and Cu[J]. Materiali in Tehnologije, 2017, 51(3): 419 − 426. doi: 10.17222/mit.2016.019
[21] Ma Pengzhao, Wu Yu, Zhang Pengju, et al. Solidification prediction of laser cladding 316L by the finite element simulation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 957 − 969.
[22] Wang L, Xue J, Wang Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel[J]. Materials Science & Engineering, 2019, 751(28): 183 − 190.
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)