高级检索

功率分布对5A06铝合金激光摆动焊接熔池动态行为的影响

Effect of power distribution on dynamic behavior of molten pool during laser oscillating welding of 5A06 aluminum alloy

  • 摘要: 以5A06铝合金锁底对接焊缝为研究对象,在激光束摆动的基础上引入一种沿正弦摆动路径分布的激光功率(功率分布),实现功率相对于摆动路径的动态调控. 基于FLUENT有限元软件,建立激光摆动焊接过程的流体动力学模型,研究光斑摆动与功率分布对焊缝成形的影响机制,模拟对比了施加等功率与功率分布2种工艺下的焊缝截面形貌、熔池动态行为及气孔形成过程. 结果表明,与等功率焊接相比,施加功率分布焊缝成形更优,未出现咬边和烧穿等缺陷;由于功率分布的特点,有效缓和了熔池的平均流速,熔融金属呈现更为稳定的流动行为,进一步提高了匙孔的稳定性,并获得了深宽比较小的匙孔,有效降低了焊缝的孔隙率(0.9 %).

     

    Abstract: 5A06 aluminum alloy lock butt weld was used as the research object. Based on the laser beam oscillating, a laser power (power distribution) which is distributed along the oscillating path was added to achieve the dynamic control of power relative to the path. The fluid dynamics model of laser oscillating welding process was established by the finite element software FLUENT to research the effect mechanism of laser oscillating and power distribution on weld forming. The weld section morphology, molten pool dynamic behavior and porosity formation process were simulated and compared under two processes of equal power and power distribution. The results show that compared with the equal power weld, the better formed weld is obtained by power distribution and has no defects such as undercut and burn through. Due to the characteristics of power distribution, the average flow rate of molten pool is effectively reduced, the steady flow behavior of molten metal is exhibited, further improve the stability of the keyhole, and smaller depth-to-width ratio keyhole is obtained, effectively reduce the porosity of the weld (0.9%).

     

/

返回文章
返回