高级检索

1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析

安同邦, 郑庆, 张永林, 梁亮, 朱彦洁, 彭云

安同邦, 郑庆, 张永林, 梁亮, 朱彦洁, 彭云. 1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析[J]. 焊接学报, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
引用本文: 安同邦, 郑庆, 张永林, 梁亮, 朱彦洁, 彭云. 1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析[J]. 焊接学报, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
Citation: AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002

1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析

基金项目: 国家重点研发计划项目(2017YFB0305105)
详细信息
    作者简介:

    安同邦,博士,高级工程师;主要从事低合金与高强结构钢焊接性及焊接材料研究等工作;Email:anran30002000@sina.com

  • 中图分类号: TG 402

SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel

  • 摘要: 采用Formastor-FⅡ全自动相变仪测定了1300 MPa级低合金高强钢的奥氏体化相变温度,结合光学显微镜与维氏硬度计等设备研究了800 ~ 500 ℃冷却时间(t8/5)对1300 MPa级低合金高强钢粗晶热影响区组织和硬度变化的影响规律. 结果表明,当t8/5为3 ~ 60 s时,1300 MPa级低合金高强钢粗晶热影响区组织均由板条马氏体组成,硬度值为438 ~ 454 HV5;随着冷却时间延长,粗晶区出现贝氏体类组织,当t8/5为150 s时,粗晶区为板条马氏体/贝氏体混合组织,硬度平均值为413 HV5;当t8/5为300 ~ 600 s时,粗晶区为板条贝氏体和粒状贝氏体混合组织,硬度值为341 ~ 381 HV5;当t8/5>600 s时,粗晶区组织主要为粒状贝氏体,硬度值为269 ~ 322 HV5. 冷裂敏感性评价结果表明,该试验钢碳当量CE(IIW)和CEN均大于0.5%,具有一定的冷裂倾向,需焊前预热,焊后热处理或保温缓冷等措施,避免焊接冷裂纹的形成.
    Abstract: Austenitization temperature of a 1300 MPa grade high strength low alloy steel was measured by the Formastor-FⅡ thermal expansion measurement, and the effect of cooling time from 800 to 500 ℃(t8/5) on the microstructure transformation and hardness change of the coarse grained heat affected zone was investigated by using Formastor-FⅡ, optical microscope, vickers hardness tester. The experimental results indicated that the microstructure of coarse grained heat affected zone (CGHAZ) was composed of lath martensite with hardness ranging from 438 to 454 HV5, when the t8/5 was 3 ~ 60 s. Along with the extension of cooling time, bainite began to form. When t8/5 was 150 s, the microstructure was mixtures of bainite and martensite with an average hardness of 413 HV5. The microstructure was mixtures of lath bainite and granular bainite with hardness ranging from 341 to 381 HV5 as t8/5 was 300 ~ 600 s. When t8/5 was longer than 600 s, the microstructure mainly consisted of granular bainite with hardness ranging from 269 to 322 HV5. The cold cracking sensitivity evaluation results show that the carbon equivalent CE (IIW) and CEN of the test steel are both greater than 0.5%, which has a certain tendency of cold cracking. Therefore, it is necessary to preheat welding, heat treatment after welding or heat preservation and slow cooling measures to avoid the formation of welding cold cracking.
  • 图  1   1 300 MPa级试验钢的SEM图像

    Figure  1.   SEM image of the 1 300 MPa experimental steel

    图  2   模拟焊接热循环曲线

    Figure  2.   Simulating welding thermal cycle curve

    图  3   试验钢近似平衡态奥氏体化相变温度

    Figure  3.   Austenite transformation temperature of the experimental steel

    图  4   试验钢不同冷速下HAZ粗晶区金相微观组织(t8/5:3 ~ 60 s)

    Figure  4.   OM images of the experimental steel at different cooling rate (t8/5: 3 ~ 60 s). (a)t8/5 = 3 s; (b)t8/5 = 6 s; (c) t8/5 = 10 s; (d) t8/5 = 15 s; (e) t8/5 = 30 s; (f) t8/5 = 60 s

    图  5   试验钢不同冷速下HAZ粗晶区金相微观组织(t8/5:150 ~ 3 000 s)

    Figure  5.   OM images of the experimental steel at different cooling rate (t8/5: 150 ~ 3 000 s). (a)t8/5 = 150 s; (b) t8/5 = 300 s; (c) t8/5 = 600 s; (d)t8/5 = 1 000 s; (e) t8/5 = 2 000 s; (f) t8/5 = 3 000 s

    图  6   不同t8/5条件试验钢CGHAZ不同组织占比

    Figure  6.   Microstructure proportion of CGHAZ of experimental steel at different t8/5

    图  7   不同t8/5条件下试验钢热模拟试样硬度

    Figure  7.   Hardness of experimental steel thermal simulated samples at different t8/5

    图  8   试验钢SH-CCT图

    Figure  8.   SH-CCT diagram of the experimental steel

    图  9   试验钢的Graville图

    Figure  9.   Graville diagram of the experimental steel

    表  1   试验钢的化学成分(质量分数,%)

    Table  1   Chemical compositions of the experimental steel

    C Si Mn P S Cr Ni Mo Fe
    0.20 0.25 0.89 0.0070 0.0030 0.40 1.21 0.55 余量
    下载: 导出CSV

    表  2   试验钢的基本力学性能

    Table  2   Mechanical properties of the experimental steel

    屈服强度
    Rp0.2/MPa
    抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    冲击吸收能量
    (−40 ℃)AKV/J
    1320 1540 10.0 82
    下载: 导出CSV
  • [1] 温长飞, 邓想涛, 王昭东, 等. 1300 MPa级超高强钢临界粗晶热影响区组织和韧性[J]. 钢铁研究学报, 2018, 30(8): 650 − 656. doi: 10.13228/j.boyuan.issn1001-0963.20170383

    Wen Changfei, Deng Xiangtao, Wang Zhaodong, et al. Microstructure and toughness of intercritically reheated coarse-grained heat affected zone in a 1300 MPa grade ultra-high strength steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 650 − 656. doi: 10.13228/j.boyuan.issn1001-0963.20170383

    [2] 彭杏娜, 彭云, 田志凌, 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响[J]. 焊接学报, 2014, 35(9): 32 − 36,38.

    Peng Xingna, Peng Yun, Tian Zhiling, et al. Effect of Ni on the microstructure evolution of Cr-Ni-Mo series high strength weld metal[J]. Transactions of the China Welding Institution, 2014, 35(9): 32 − 36,38.

    [3]

    An Tongbang, Wei Jinshan, Zhao Lin, et al. Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding[J]. Journal of Iron and Steel Research, International, 2019, 26: 512 − 518. doi: 10.1007/s42243-019-00270-6

    [4] 徐彬, 马成勇, 李莉, 等. 1200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能[J]. 材料科学与工艺, 2016, 24(3): 28 − 33.

    Xu Bin, Ma Chengyong, Li Li, et al. SH-CCT diagra, microstructures and properties of heat-affected zone of a 1200 MPa grade HSLA steel[J]. Materials Science & Technology, 2016, 24(3): 28 − 33.

    [5] 蒋庆梅, 张小强, 陈礼清, 等. 1000 MPa级超高强钢的SH-CCT曲线及其热影响区的组织和性能[J]. 钢铁研究学报, 2014, 26(1): 47 − 51.

    Jiang Qingmei, Zhang Xiaoqiang, Chen Liqing et al. SH-CCT diagram, microstructures and properties of heat-affected zone in a 1000 MPa grade extra high-strength steel[J]. Journal of Iron and Steel Research, 2014, 26(1): 47 − 51.

    [6] 王立军, 蔡庆伍, 余伟, 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46(6): 687 − 694. doi: 10.3724/SP.J.1037.2010.00687

    Wang Lijun, Cai Qingwu, Yu Wei, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metallurgica Sinica, 2010, 46(6): 687 − 694. doi: 10.3724/SP.J.1037.2010.00687

    [7]

    Wang Chunfang, Wang Maoqiu, Shi Jie, et al. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science & Technology, 2007, 23(5): 659 − 664.

    [8] 温长飞, 邓想涛, 王昭东, 等. 超高强钢Q1100的SH-CCT曲线及粗晶热影响区组织和性能[J]. 东北大学学报, 2017, 38(6): 809 − 813.

    Wen Changfei, Deng Xiangtao, Wang Zhaodong, et al. SH-CCT diagram, microstructure and properties of coarse grain heat-affected zone in Q1100 ultra-high strength steel[J]. Journal of Northeastern University, 2017, 38(6): 809 − 813.

    [9]

    Kim Kihyuk, Moon Injun, Kim Kiwon, et al. Influence of carbon equivalent value on the weld bead bending properties of high-strength low-alloy steel plates[J]. Journal of Materials Science & Technology, 2017, 33(4): 321 − 329.

    [10]

    Long Xiaoyan, Zhang Fucheng, Yang Zhinan. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels[J]. Materials Science and Engineering:A, 2018, 715: 10 − 16.

    [11]

    Li Xueda, Fan Yuran, Ma Xiaoping, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness[J]. Materials & Design, 2015, 67: 457 − 463.

    [12] 张文钺. 焊接冶金原理[M]. 北京: 机械工业出版社, 1999.

    Zhang Wenyue. Welding metallurgical principle[M]. Beijing: China Machine Press, 1999.

    [13] 卓晓, 李立新, 李弟, 等. EH36-Z35钢在低温环境中的焊接冷裂纹敏感性[J]. 机械工程材料, 2020, 44(8): 47 − 51. doi: 10.11973/jxgccl202008010

    Zhuo Xiao, Li Lixin, Li Di, et al. Weld cold crack sensitivity of EH36-Z35 steel in low temperature environment[J]. Materials for Mechanical Engineering, 2020, 44(8): 47 − 51. doi: 10.11973/jxgccl202008010

    [14] 韩伦. 富铜纳米相强化钢焊接性及焊接工艺研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

    Han Lun. Studies on weldabilitu and welding technology of copper-rich nanoscale precipitate- strengthened steel[D]. Harbin: Harbin Engineering University, 2020.

    [15] 曹继明. 用碳当量CEN确定高强钢焊接预热温度[J]. 焊接, 1995(1): 17 − 20, 24.

    Cao Jiming. Determination of preheating temperature by carbonequivalent(CEN) for high strength steel welding[J]. Welding & Joining, 1995(1): 17 − 20, 24.

  • 期刊类型引用(0)

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  40
  • PDF下载量:  41
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-04-01
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回