高级检索

Ni含量对304/Sn-8Sb-4Cu-xNi/304钎焊接头组织与剪切性能的影响

韩晓辉, 张志毅, 邓建峰, 刘勇, 王博, 徐野

韩晓辉, 张志毅, 邓建峰, 刘勇, 王博, 徐野. Ni含量对304/Sn-8Sb-4Cu-xNi/304钎焊接头组织与剪切性能的影响[J]. 焊接学报, 2023, 44(2): 117-122. DOI: 10.12073/j.hjxb.20220325008
引用本文: 韩晓辉, 张志毅, 邓建峰, 刘勇, 王博, 徐野. Ni含量对304/Sn-8Sb-4Cu-xNi/304钎焊接头组织与剪切性能的影响[J]. 焊接学报, 2023, 44(2): 117-122. DOI: 10.12073/j.hjxb.20220325008
HAN Xiaohui, ZHANG Zhiyi, DENG Jianfeng, LIU Yong, WANG Bo, XU Ye. Effect of Ni content on microstructure and shearing property of 304/Sn-8Sb-4Cu-xNi/304 solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 117-122. DOI: 10.12073/j.hjxb.20220325008
Citation: HAN Xiaohui, ZHANG Zhiyi, DENG Jianfeng, LIU Yong, WANG Bo, XU Ye. Effect of Ni content on microstructure and shearing property of 304/Sn-8Sb-4Cu-xNi/304 solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 117-122. DOI: 10.12073/j.hjxb.20220325008

Ni含量对304/Sn-8Sb-4Cu-xNi/304钎焊接头组织与剪切性能的影响

基金项目: 浙江省异质增材工程研究中心资助项目;宁波市“3315”人才计划2020年创新团队C类
详细信息
    作者简介:

    韩晓辉,硕士,教授级高级工程师,博士研究生导师;主要从事轨道客车焊接工艺设计、技术研发及体系建设工作;Email: 13793237339@139.com

    通讯作者:

    王博,博士,高级工程师;Email: wangbo4175@126.com

  • 中图分类号: TG 454

Effect of Ni content on microstructure and shearing property of 304/Sn-8Sb-4Cu-xNi/304 solder joints

  • 摘要: 研究了Ni含量对Sn-8Sb-4Cu-xNi(x = 0, 0.5, 1和2,质量分数)钎料熔点和微观组织的影响,用Sn-8Sb-4Cu-xNi钎料对304不锈钢进行钎焊连接,分析了接头的界面组织与剪切性能. 结果表明,添加不同含量的Ni后,Sn-8Sb-4Cu-xNi均为近共晶钎料,其熔点约为245 ℃;Sn-8Sb-4Cu钎料组织由α相基体、Sb2Sn3 + Cu6Sn5 + Sn复合相和Cu6(Sn,Sb)5 相组成. 添加Ni元素后,钎料中块状Cu6(Sn,Sb)5转变为细小、均匀分布的 (Cu,Ni)6(Sn,Sb)5. 当Ni含量小于1%时,随Ni含量的增加,钎料中的复合相和(Cu,Ni)6(Sn,Sb)5相均增加;当Ni含量为2%时,钎料中的复合相和(Cu,Ni)6(Sn,Sb)5相均减少,但(Cu,Ni)6(Sn,Sb)5相中Ni含量增加至与Cu相当;Sn-8Sb-4Cu-xNi/304钎焊界面均形成了一层厚度约1.5 μm的扩散反应层,EDS分析显示,该层为FeSn2化合物. 钎缝中全部为Cu6Sn5型化合物,未见Sn-Sb 型化合物. Ni元素的添加,提高了304/Sn-8Sb-4Cu-xNi/304钎焊接头的抗剪强度,当Ni含量为0.5%时,接头抗剪强度最大,为67 MPa,与不含Ni钎料相比提高了60%. 所有接头的断裂位置均位于钎缝.
    Abstract: Effect of Ni content on melting point and microstructure of Sn-8Sb-4Cu-xNi (x=0, 0.5, 1 and 2, mass fraction) solders were investigated. 304 stainless steel were joined by Sn-8Sb-4Cu-xNi solders, and interfacial microstructure and shearing property of the solder joints were analyzed. The results showed that all of the Sn-8Sb-4Cu-xNi with different Ni content are near eutectic solders, with a melting point of 245 ℃. The microstructure of Sn-8Sb-4Cu solder was consisted of α phase, Sb2Sn3 + Cu6Sn5+Sn composite phase and Cu6(Sn,Sb)5 phase. After the addition of Ni, the bulk Cu6(Sn,Sb)5 transformed into fine and uniformly distributed (Cu,Ni)6(Sn,Sb)5. When Ni content was less than 1%, the amount of composite phase and (Cu,Ni)6(Sn,Sb)5 phase increased with the increasing of Ni content. When Ni content increased to 2%, the amount of composite phase and (Cu,Ni)6(Sn,Sb)5 phase decreased with the increasing of Ni content, however, Ni content in the (Cu,Ni)6(Sn,Sb)5 phase increases to be comparable to Cu. A diffusion layer with a thickness of about 1.5 μm formed at the Sn-8Sb-4Cu-xNi/304 interface, which was identified to be Fe2Sn by EDS. Only Cu6Sn5 type intermetallic compounds formed in the solders of 304/Sn-8Sb-4Cu-xNi/304 joints. The addition of Ni element improved the shear strength of 304/Sn-8Sb-4Cu-xNi/304 brazed joints, and the maximum shear strength of 67 MPa was achieved when the Ni content was 0.5%, which was 60% higher compared to the Ni-free brazing material. The shear fracture locations of all joints were located in the soldering seam.
  • 图  1   钎焊接头示意图(mm)

    Figure  1.   Schematic diagram of the solder joint

    图  2   Sn-8Sb-4Cu-xNi钎料DSC分析结果

    Figure  2.   DSC analysis results of Sn-8Sb-4Cu-xNi solders

    图  3   Sn-8Sb-4Cu-xNi钎料微观组织

    Figure  3.   Microstructure of the Sn-8Sb-4Cu-xNi solders. (a) Sn-8Sb-4Cu; (b) Sn-8Sb-4Cu-0.5Ni; (c) Sn-8Sb-4Cu-1Ni; (d) Sn-8Sb-4Cu-2Ni

    图  4   304/Sn-8Sb-4Cu-xNi/304钎缝宏观形貌

    Figure  4.   Macro morphology of 304/Sn-8Sb-4Cu-xNi/304 solder joints. (a) 304/Sn-8Sb-4Cu/304; (b) 304/Sn-8Sb-4Cu-0.5Ni/304; (c) 304/Sn-8Sb-4Cu-1Ni/304; (d) 304/Sn-8Sb-4Cu-2Ni/304

    图  5   Sn-8Sb-4Cu-xNi/304界面组织

    Figure  5.   Interfacial microstructure of Sn-8Sb-4Cu-xNi/304. (a) Sn-8Sb-4Cu/304; (b) Sn-8Sb-4Cu-0.5Ni/304; (c) Sn-8Sb-4Cu-1Ni/304; (d) Sn-8Sb-4Cu-2Ni/304

    图  6   沿图5箭头方向的界面线扫描图

    Figure  6.   Line scanning diagram of the interface alone the arrow in Fig.5. (a) Sn-8Sb-4Cu/304; (b) Sn-8Sb-4Cu-0.5Ni/304; (c) Sn-8Sb-4Cu-1Ni/304; (d) Sn-8Sb-4Cu-2Ni/304

    图  7   304/Sn-8Sb-4Cu-xNi/304钎焊接头抗剪强度

    Figure  7.   Shear strength of the 304/Sn-8Sb-4Cu-xNi/304 solder joints

    图  8   304/Sn-8Sb-4Cu-xNi/304钎焊接头断口形貌

    Figure  8.   Fracture morphology of the 304/Sn-8Sb-4Cu-xNi/304 solder joints. (a) 304/Sn-8Sb-4Cu/304; (b) 304/Sn-8Sb-4Cu-0.5Ni/304; (c) 304/Sn-8Sb-4Cu-1Ni/304; (d) 304/Sn-8Sb-4Cu-2Ni/304

    表  1   304不锈钢的化学成分(质量分数, %)

    Table  1   Chemical compositions of 304 stainless steel

    CrNiCMnPSSiFe
    18 ~ 208.0 ~ 10.50.082.000.0350.0150.75余量
    下载: 导出CSV

    表  2   Sn-8Sb-4Cu-xNi/304界面化学成分(原子分数,%)

    Table  2   Chemical compositions of the Sn-8Sb-4Cu-xNi/304 interface

    位置SnSbCuFeCrNi扩散层化合物
    A58.61.51.631.85.41.1FeSn2
    B56.42.82.228.77.92.0FeSn2
    C75.52.51.215.04.21.6FeSn2 + Sn
    D54.13.03.528.98.32.2FeSn2
    下载: 导出CSV
  • [1] 颜怡文, 刘为开. 封装中无铅焊锡与不锈钢及铁镍的界面反应[J]. 电子与封装, 2010, 10(6): 1 − 5. doi: 10.3969/j.issn.1681-1070.2010.06.001

    Yan Yiwen, Liu Weikai. Interfacial reactions in lead-free solders with Au/Ni/SUS 304 and alloy 42 in microelectronic packaging[J]. Electronics & Packaging, 2010, 10(6): 1 − 5. doi: 10.3969/j.issn.1681-1070.2010.06.001

    [2] 裴冲, 吴欣, 程耀永, 等. 采用BNi82CrSiB钎料钎焊1Cr12Ni3MoVN不锈钢的接头组织及性能[J]. 电焊机, 2020, 50(9): 268 − 272. doi: 10.7512/j.issn.1001-2303.2020.09.31

    Pei Chong, Wu Xin, Cheng Yaoyong, et al. Microstructures and mechanical properties of brazing 1Cr12Ni3MoVN stainless steel joints with BNi82CrSiB filler metal[J]. Electric Welding Machine, 2020, 50(9): 268 − 272. doi: 10.7512/j.issn.1001-2303.2020.09.31

    [3] 范东宇, 汪一卉, 黄继华, 等. Cf/SiC复合材料与304不锈钢钎焊接头组织与性能 [J]. 焊接学报, 2014, 35(12): 31-34.

    Fan Dongyu, Wang Yihui, Huang Jihua, et al. Brazing Cf/SiC composite materials with 304 stainless steel using Ti-Zr-Be filler metal[J], Transactions of the China Welding Institution, 2014, 35(12): 31-34.

    [4] 张青科, 裴夤崟, 龙伟民. 奥氏体不锈钢钎焊界面裂纹形成机制研究[J]. 金属学报, 2013, 49(10): 1177 − 1184. doi: 10.3724/SP.J.1037.2013.00219

    Zhang Qingke, Pei Yinyin, Long Weimin. Investigations on formation mechanisms of brazing cracks at the austenitic stainless steel/filler metal brazing joint interfaces[J]. Acta Metallurgica Sinica, 2013, 49(10): 1177 − 1184. doi: 10.3724/SP.J.1037.2013.00219

    [5] 王星星, 李帅, 彭进, 等. 基于镀锡银钎料钎焊304不锈钢接头的腐蚀行为[J]. 焊接学报, 2018, 39(4): 63 − 66. doi: 10.12073/j.hjxb.2018390097

    Wang Xingxing, Li Shuai, Peng Jin, et al. Corrosion behaviors of 304 stainless steel joints brazed with Sn-electroplated Ag brazing alloys[J]. Transactions of the China Welding Institution, 2018, 39(4): 63 − 66. doi: 10.12073/j.hjxb.2018390097

    [6]

    Liu Xu, Huang Xiaomeng, Ma Huibin, et al. Microstructure and properties of the joints of ZrO2 ceramic/stainless steel brazed in vacuum with AgCuTi active filler metal[J]. China Welding, 2018, 27(2): 52 − 56.

    [7] 管永星, 薛松柏, 韩若男, 等. 新型304不锈钢软钎焊用钎剂的研制[J]. 焊接学报, 2013, 34(2): 101 − 104.

    Guan Yongxing, Xue Songbai, Han Ruonan, et al. Development of flux for soldering of 304 stainless steel[J]. Transactions of the China Welding Institution, 2013, 34(2): 101 − 104.

    [8] 周许升, 龙伟民, 裴夤崟, 等. 不锈钢软钎焊用钎料和钎剂的研究[J]. 焊接, 2014(1): 26 − 29.

    Zhou Xusheng, Long Weimin, Pei Yinyin, et al. Study on solder and flux for soldering stainless steel[J]. Welding & Joining, 2014(1): 26 − 29.

    [9] 郝云波, 赵凯, 杨萍, 等. 激光熔覆锡基巴氏合金微观组织和力学性能[J]. 中国有色金属学报, 2018, 28(10): 2016 − 2023. doi: 10.19476/j.ysxb.1004.0609.2018.10.08

    Hao Yunbo, Zhao Kai, Yang Ping, et al. Microstructure and mechanical properties of tin-based babbitt alloy made by laser cladding deposition[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(10): 2016 − 2023. doi: 10.19476/j.ysxb.1004.0609.2018.10.08

    [10]

    Yang L, Jie X H, Guo L. Low-temperature property of new type lead-free solder Sn-X-Cu-Ni[J]. Advanced Materials Research, 2011, 154-155: 371 − 375.

    [11]

    Ventura T, Terzi S, Rappaz M, et al. Effects of Ni additions, trace elements and solidification kinetics on microstructure formation in Sn-0.7 Cu solder[J]. Acta Materialia, 2011, 59(10): 4197 − 4206. doi: 10.1016/j.actamat.2011.03.044

    [12]

    Tao Q B, Benabou L, Vivet L, et al. Effect of Ni and Sb additions and testing conditions on the mechanical properties and microstructures of lead-free solder joints[J]. Materials & Science Engineering: A, 2016, 669(4): 403 − 416.

    [13]

    Lee C, Lin Y W, Yen Y W. The 260 ℃ phase equilibria of the Sn-Sb-Cu ternary system and interfacial reactions at the Sn-Sb/Cu joints[J]. Intermetallics, 2007, 15(8): 1027 − 1037. doi: 10.1016/j.intermet.2006.12.002

    [14] 郭亚希, 谢敬佩, 王文焱, 等. 铸造方法对巴氏合金组织及性能的影响[J]. 河南科技大学学报, 2009, 30(4): 8 − 11,116.

    Guo Yaxi, Xie Jingpei, Wang Wenyan, et al. Effect of casting method on microstructure and property of babbitt alloy[J]. Journal of Henan University of Science & Technology (Nature Science), 2009, 30(4): 8 − 11,116.

  • 期刊类型引用(2)

    1. 张超,周猛兵,崔雷,陶欣,王军,王伟,刘永长. 9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊焊缝组织和冲击性能分析. 焊接学报. 2024(04): 36-42+131 . 本站查看
    2. 王猛,张立平,赵琳瑜,吴军,熊然,蒙永胜,李军红. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能. 焊接学报. 2023(10): 102-110+138-139 . 本站查看

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  59
  • PDF下载量:  43
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-03-24
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回