高级检索

旁路耦合三丝间接电弧增材制造成形特性

张天奕, 张兆栋, 王泽力, 徐国敏, 刘黎明

张天奕, 张兆栋, 王泽力, 徐国敏, 刘黎明. 旁路耦合三丝间接电弧增材制造成形特性[J]. 焊接学报, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002
引用本文: 张天奕, 张兆栋, 王泽力, 徐国敏, 刘黎明. 旁路耦合三丝间接电弧增材制造成形特性[J]. 焊接学报, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002
ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002
Citation: ZHANG Tianyi, ZHANG Zhaodong, WANG Zeli, XU Guomin, LIU Liming. Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 25-30. DOI: 10.12073/j.hjxb.20220311002

旁路耦合三丝间接电弧增材制造成形特性

基金项目: 国家自然科学基金资助项目(52175290)
详细信息
    作者简介:

    张天奕,硕士研究生;主要从事电弧焊技术的研究;Email: zhangtianyi@mail.dlut.edu.cn

    通讯作者:

    张兆栋, 博士, 教授; Email: skyezzd@dlut.edu.cn.

  • 中图分类号: TG 444

Forming characteristics of bypass coupling triple-wire gas indirect arc additive manufacturing

  • 摘要: 采用旁路耦合三丝间接电弧焊( bypass coupling triple-wire gas indirect arc welding,BCTW-GIA焊)进行Q345低碳钢增材制造. 利用高速成像设备研究了旁路电流变化对电弧特性的影响,并观察了对应的焊缝成形特性. 结果表明,随着旁路电流的增加,间接电弧占比逐渐减少,而直接电弧占比逐渐增加,焊接热输入逐步提升,焊缝的接触角逐渐减小. 当旁路电流为155 A时,可在表面成形良好的前提下得到铺展性最优的单道焊缝. 采用此参数进行单道多层增材得到了直壁墙体,沉积速率高达13.3 kg/h. 该增材制造方法具有较高的熔敷效率和较低的热输入,有利于改善增材试样的显微组织,并提高试样的平均硬度. 试样底部、中部及顶部区域的平均硬度分别为 186.80,172.44,176.04 HV.
    Abstract: The additive manufacturing of Q345 low carbon steel using bypass coupling triple-wire gas indirect arc welding (BCTW-GIA) is reported. The influence of bypass current variation on arc characteristics is studied by using high-speed imaging equipment, and the corresponding formimg characteristics of beads are observed. The results show that with the increase of bypass current, the gradual increases happen to the proportion of direct arc and the welding heat input, however the gradual decreases happen to the proportion of indirect arc and the contact angle of the beads. When the bypass current is 155 A, a single-pass welding bead with the best spreadability can be obtained under the premise of good forming surface. Based on this set of parameters, the straight wall can be acquired by single pass and multi-layer additive manufacturing with a deposition rate as high as 13.3 kg/h. The high cladding efficiency and low heat input of the additive manufacturing method are conducive to improving the microstructure of the additive samples and increasing the average hardness. The average hardnesses of the bottom, middle and top areas of the sample are 186.80, 172.44 and 176.04 HV, respectively.
  • 电弧是弧焊过程中的热源和力源,电弧等离子体行为和特性对焊接接头组织结构及性能具有决定性作用[1]. 开展电弧等离子体行为和特性的研究对于指导焊接工艺和提高焊接接头质量具有重要意义. 等离子弧焊接(plasma arc welding,PAW)是一种高能量密度的弧焊工艺,可以在不开坡口条件下一次性焊透中厚板,实现单面焊双面成形,在先进材料焊接领域具有广阔的应用前景[2-4]. 但常规等离子弧焊接穿孔过程稳定性不足,获得优质焊接接头的常规等离子弧焊接工艺窗口小[5-6]. 作者团队自主设计和搭建气流再压缩等离子弧焊接(gas focusing plasma arc welding,GF-PAW)新工艺焊接系统,该工艺通过压缩气实现对电弧的再次压缩,提高电弧穿透能力,有望提高等离子弧焊接速度和最大可焊厚度. 目前,气流再压缩等离子弧焊接新工艺中的电弧等离子体行为尚不清楚. 探索和研究气流再压缩等离子弧焊接新工艺的电弧特性,对于丰富等离子弧焊接理论体系和指导焊接工艺具有重要理论意义和应用价值.

    针对常规等离子弧焊接工艺,焊接工作者已经开展了较深入的研究[7-16]. 陈树君等人[17]建立了变极性等离子弧焊接电弧数值分析模型,定量计算了等离子弧温度场、流场等,对比分析了正极性等离子弧行为和反极性等离子弧行为. 吴宣楠等人[18]综合考虑等离子弧与熔池的耦合作用,构建了等离子弧焊接数理模型,定量分析了等离子弧热流分布和流场分布,数值模拟了熔池温度场和流场. 菅晓霞等人[19-20]在考虑Fe蒸气的基础上建立了等离子焊接数理模型,定量计算了等离子弧电流分布、热流分布,研究了Fe蒸气对等离子弧温度场、电场、流场的影响.李天庆等人[21]通过试验方法研究了气流再压缩等离子弧焊接新工艺的焊缝成形.

    目前,针对气流再压缩等离子弧焊接新工艺的研究较少,气流再压缩等离子弧焊接中的电弧等离子体行为和电弧特性,压缩气对电弧等离子体行为影响机制,这些科学问题都有待探讨和分析. 数值模拟是研究焊接复杂热物理过程的重要手段. 文中将针对气流再压缩等离子弧焊接新工艺,构建等离子弧数理模型,定量计算气流再压缩等离子弧温度场、流场,对比分析气流再压缩等离子弧与常规等离子弧,初步探索气流再压缩等离子弧特性.

    气流再压缩等离子弧焊接电弧数理模型主要从几何建模、控制方程和边界条件三方面进行阐述.

    根据气流再压缩等离子弧焊接焊枪喷嘴尺寸,建立气流再压缩等离子弧焊接电弧数值模拟的几何模型,如图1所示. 其中区域AOJMBA是钨极,CKLD是喷嘴内部离子气通道内壁,属于约束型壁面,BC,DE和FG处分别是离子气入口、压缩气入口和保护气入口,IH为金属工件上表面. 压缩气入口是气流再压缩等离子弧几何建模的关键. 通过测定实际焊接中采用的钨极尺寸,几何模型中钨极尖端半径是0.4 mm的圆台面,钨极的锥角为30°.

    图  1  气流再压缩等离子弧几何模型示意图
    Figure  1.  Geometric model of gas focusing plasma arc

    气流再压缩等离子弧焊接是涉及传热传质的复杂热物理过程. 气流再压缩等离子弧的物理本质是电弧等离子体. 气流再压缩等离子弧模拟计算的假设如下:等离子体处于局部热平衡状态,即各粒子(电子、离子和原子)的温度均相等;在模拟计算的区域均为理想的纯氩气环境;等离子体是光学薄体,即等离子体辐射重吸收的热量相比于总的热量损失可以忽略不计;忽略等离子体的重力作用和粘性耗散;等离子弧不可压缩且处于层流状态;在稳定焊接过程中,等离子弧呈轴对称分布,可以看作是二维的等离子弧模型绕中心轴线旋转而成,且处于稳定状态;简化处理鞘层对电弧的影响.

    气流再压缩等离子弧遵循质量守恒、动量守恒、能量守恒,满足麦克斯韦方程组.

    (1)质量连续性方程

    $$\frac{\partial }{{\partial z}}\left( {\rho {v_z}} \right) + \frac{1}{r}\frac{\partial }{{\partial r}}\left( {\rho r{v_r}} \right) = 0$$ (1)

    式中:$r$$z$分别为径向坐标、轴向坐标;$\rho $为等离子体密度;${v_r}$为径向速度;${v_z}$为轴向速度.

    (2)动量方程

    轴向动量方程

    $$\begin{split} &\dfrac{\partial }{{\partial z}}\left( {\rho v_z^2} \right) + \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left( {\rho r{v_z}{v_r}} \right) = - \dfrac{{\partial P}}{{\partial z}} + \dfrac{\partial }{{\partial z}}\left( {2\mu \dfrac{{\partial {v_z}}}{{\partial z}}} \right) +\\& \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left[ {\mu r\left( {\dfrac{{\partial {v_r}}}{{\partial z}} + \dfrac{{\partial {v_z}}}{{\partial r}}} \right)} \right] + {j_r}{B_\theta } \end{split} $$ (2)

    径向动量方程

    $$\begin{split} &\dfrac{\partial }{{\partial z}}\left( {\rho {v_z}{v_r}} \right) + \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left( {\rho rv_r^2} \right) = - \dfrac{{\partial P}}{{\partial r}} + \dfrac{\partial }{{\partial z}}\left[ {\mu \left( {\dfrac{{\partial {v_r}}}{{\partial z}} + \dfrac{{\partial {v_z}}}{{\partial r}}} \right)} \right] +\\& \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left( {2\mu r\dfrac{{\partial {v_r}}}{{\partial r}}} \right) - 2\mu \dfrac{{{v_r}}}{{{r^2}}} - {j_z}{B_\theta } \end{split} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$$ (3)

    式中:$P$为压力;$\mu $为等离子体的粘度;${j_r}$为电弧等离子体径向电流密度分量;${j_z}$为电弧等离子体轴向电流密度分量;${B_\theta }$为方位磁场强度.

    (3)能量方程

    $$\begin{split} & \dfrac{\partial }{{\partial z}}\left( {\rho {c_{\rm{p}}}{v_z}T} \right) + \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left( {\rho {c_{\rm{p}}}{v_r}T} \right) = \dfrac{\partial }{{\partial z}}\left( {\kappa \dfrac{{\partial T}}{{\partial z}}} \right) + \dfrac{1}{r}\dfrac{\partial }{{\partial r}}\left( {r\kappa \dfrac{{\partial T}}{{\partial r}}} \right) + \\ & \dfrac{{j_z^2 + j_r^2}}{\sigma } + \dfrac{{5{k_{\rm{B}}}}}{{2e}}\left( {{j_z}\dfrac{{\partial T}}{{\partial z}} + {j_r}\dfrac{{\partial T}}{{\partial r}}} \right) - {S_r} \end{split} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$$ (4)

    式中:$T$为热力学温度;${c_{\rm{p}}}$为等离子体的比热容;${k_{\rm{B}}}$为玻尔兹曼常数,取值为1.38$ \times $10−23 ${\rm{J}}/{\rm{K}}$$\kappa $为等离子体热导率;$e$是电子电量. 等式右侧第一、二项为热传导传递的热量;第三项、第四项和第五项分别为焦耳热、电子迁移传热和辐射损失.

    (4)麦克斯韦方程组

    电场方程

    $$\frac{\partial }{{\partial z}}\left( {\sigma \frac{{\partial \phi }}{{\partial z}}} \right) + \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r\sigma \frac{{\partial \phi }}{{\partial r}}} \right) = 0$$ (5)
    $${j_z} = - \sigma \frac{{\partial \phi }}{{\partial z}}$$ (6)
    $${j_r} = - \sigma \frac{{\partial \phi }}{{\partial r}}$$ (7)

    式中:$\phi $为电弧等离子体的电势;$\sigma $为等离子体的电导率,电导率是随温度变化的[22-23].

    轴向磁势方程

    $$\frac{{{\partial ^2}{A_z}}}{{\partial {z^2}}} + \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r\frac{{\partial {A_z}}}{{\partial r}}} \right) + {\mu _0}{j_z} = 0$$ (8)

    径向磁势方程

    $$\frac{{{\partial ^2}{A_r}}}{{\partial {z^2}}} + \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r\frac{{\partial {A_r}}}{{\partial r}}} \right) - \frac{{{A_r}}}{{{r^2}}} + {\mu _0}{j_r} = 0$$ (9)

    磁感应强度

    $$B{\rm{ = }}\nabla \cdot A$$ (10)

    式中:${A_z}$${A_r}$分别为轴向磁矢量分量、径向磁矢量分量;${\mu _0}$为真空磁导率;$B$为磁场强度;$A$为磁矢量.

    边界条件是描述气流再压缩等离子弧数理模型的重要部分. 气流再压缩等离子弧数值模拟的边界条件包括能量边界条件、动量边界条件、电磁场边界条件. 根据气流再压缩等离子弧特点,该研究在数值分析模型采用的边界条件,如表1所示.

    表  1  GF-PAW电弧数值模拟边界条件
    Table  1.  Boundary conditions of arc modeling in GF-PAW
    边界名称轴向速度vz/(m·s−1)径向速度vr/(m·s−1)温度T/K电势$\phi $/V相对压强ρ/Pa
    BC常数01000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    CKLD001000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    DE常数0300$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    EF001000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    FG常数01000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    GH001000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$0
    HI0030000
    IO${v_z}$$\scriptstyle{ {\partial {v_r} } / {\partial r = 0} }$$\scriptstyle{ {\partial T}/ {\partial r = 0} }$$\scriptstyle{ {\partial \phi }/ {\partial r = 0} }$
    OJ003500$- \scriptstyle\sigma \left( { { {\partial \phi } / {\partial r} } } \right) = {I / {\pi {r^2} } }$
    BMJ003000$\scriptstyle{ {\partial \phi } / {\partial r = 0} }$
    下载: 导出CSV 
    | 显示表格

    气流再压缩等离子弧焊接工艺参数和常规等离子弧焊接工艺参数,如表2所示.

    表  2  主要焊接工艺参数
    Table  2.  Welding parameter
    焊接方法焊接电流
    I/A
    离子气流量 QP/(L·min−1)压缩气流量QF/(L·min−1)保护气流量QS/(L·min−1)
    PAW1402.0020
    GF-PAW1402.01.020
    下载: 导出CSV 
    | 显示表格

    采用Gambit软件对气流再压缩等离子弧进行几何建模和网格划分. 网格采用四边形网格,网格数为3 105个,节点数为3 278个. 靠近中心轴线的位置,温度变化大,采用密网格;远离中心轴线的位置,采用疏网格. 通过采用疏密网格,保证计算精度,同时提高计算效率. 采用ANSYS Fluent 18.2软件进行计算;采用PISO算法计算动量方程;采用C语言进行二次编程,通过UDF处理能量方程源项、动量方程源项,通过增加压缩气入口考虑压缩气对电弧的作用,通过UDS处理麦克斯韦方程中的标量方程.

    图2为气流再压缩等离子弧和常规等离子弧温度分布云图. 从图2的数值模拟结果可知,气流再压缩等离子弧和常规等离子弧均呈现钟罩形状,最高温度均位于钨极尖端附近. 在压缩气作用下,气流再压缩等离子弧焊接过程中靠近喷嘴处的等离子弧发生了收缩. 气流再压缩等离子弧靠近喷嘴出口处温度高于7 900 K的电弧半径R1为2.38 mm, 温度高于7 900 K的最大电弧半径R3为5.92 mm;常规等离子弧靠近喷嘴出口处温度高于7 900 K的电弧半径R2为2.53 mm,温度高于7 900 K的最大电弧半径R4为6.48 mm. 从图2b可以看出,在 3 300 ~ 7 900 K温度范围,与常规等离子弧相比,气流再压缩等离子弧发生比较明显收缩,可以在一定程度上提高电弧穿透能力. 李天庆等人[21]的试验结果也表明气流再压缩等离子弧焊接电弧能量更集中,电弧穿透能力更强,在一定程度上验证了文中的模拟结果.

    图  2  气流再压缩等离子弧温度场和常规等离子弧温度场
    Figure  2.  Temperature distribution of arc in GF-PAW process and PAW process. (a) temperature field 1;(b) temperature field 2

    为了定量分析等离子弧温度分布,提取了等离子弧温度分布曲线,如图3所示. 图3a为喷嘴内不同轴向位置处的等离子弧温度分布曲线,图3b为喷嘴外不同轴向位置处的等离子弧温度分布曲线. 喷嘴内部z = 1,2,3 mm处的气流再压缩等离子弧和常规等离子弧温度分布基本相同,如图3a所示,模拟结果说明,压缩气对喷嘴内部的等离子弧基本没有影响. 喷嘴外部z = 4,5,6,7 mm处的气流再压缩等离子弧和常规等离子弧温度分布相差较大,如图3b所示,从z = 4 mm处的等离子弧分布曲线可以看出,r < 1.4 mm时,相同温度处的气流再压缩等离子弧作用半径与常规等离子弧作用半径基本相同;r = 1.4 mm时,气流再压缩等离子弧温度与常规等离子弧温度相同;r > 1.4 mm时,相同温度处的气流再压缩等离子弧作用半径小于常规等离子弧作用半径. 模拟结果说明,压缩气对喷嘴外部的等离子弧产生了拘束压缩作用,这可能是电弧穿透能力增加的本质原因.

    图  3  等离子弧温度分布曲线
    Figure  3.  Curve of plasma arc temperature distribution. (a) plasma arc temperature inside orifice;(b) plasma arc temperature outside orifice

    图4为等离子弧速度矢量分布云图. 从图4可以 看出,气流再压缩等离子弧和常规等离子弧速度分布基本相同,模拟得到的气流再压缩等离子弧、常规等离子弧的最大速度分别为534.11,534.15 m/s. 图5描述了不同轴向位置处的等离子弧速度分布曲 线,相同轴向位置的气流再压缩等离子弧速度曲线与常规等离子弧速度曲线基本重合. 模拟结果表明, 1.0 的压缩气对等离子弧速度分布基本没有影响.

    图  4  等离子弧速度矢量云图
    Figure  4.  Velocity distribution of plasma arc
    图  5  等离子弧速度分布曲线
    Figure  5.  Curve of plasma arc velocity distribution

    图6为气流再压缩等离子弧和常规等离子弧电势分布云图. 模拟得到的气流再压缩等离子弧电弧电压、常规等离子弧电弧电压分别为−21.08,−20.88 V. 电势计算结果表明:相同电流条件下,与常规等离子弧相比,气流再压缩等离子弧电弧电压绝对值略有增大.

    图  6  等离子弧电势分布图
    Figure  6.  Potential distribution of plasma arc

    自主设计搭建了气流再压缩等离子弧焊接系统,并在表2所示的参数条件下进行了试验,检测了气流再压缩等离子弧电弧电压和常规等离子弧电弧电压如图7所示. 试验得到的气流再压缩等离子弧电弧电压、常规等离子弧电弧电压分别为−23.67,−23.26 V. 模拟结果和试验结果均表明,与常规等离子弧相比,相同电流条件下,气流再压缩等离子弧电弧电压绝对值略有升高,电弧电压模拟结果与试验数据基本吻合.

    图  7  试验检测的电弧电压
    Figure  7.  Arc voltage measured by experiment

    (1) 建立了气流再压缩等离子弧焊接新工艺的电弧数理模型,定量计算了气流再压缩等离子弧温度分布、流场分布、电势分布,初步揭示了压缩气对电弧的压缩机理.

    (2) 在压缩气作用下,气流再压缩等离子弧发生比较明显收缩. 压缩气对喷嘴内的等离子弧温度分布基本没有影响,对喷嘴外部的等离子弧温度分布影响较大.

    (3) 通过对等离子弧速度的模拟分析发现,加入压缩气后对等离子弧的最大速度及等离子弧的速度分布基本没有影响.

    (4)模拟结果和试验结果均表明,与常规等离子弧焊接相比,在相同电流条件下,气流再压缩等离子弧焊接电弧电压有一定程度增加,模拟结果与试验数据基本吻合.

  • 图  1   BCTW-GIA焊增材制造系统示意图

    Figure  1.   System diagram of BCTW-GIA welding additive manufacturing

    图  2   旁路电流对单道焊缝形貌的影响

    Figure  2.   Effect of bypass currents on morphology of single beads. (a) bypass current 0 A; (b) bypass current 75 A; (c) bypass current 115 A; (d) bypass current 155 A; (e) bypass current 195 A; (f) bypass current 360 A

    图  3   旁路电流对电弧形态的影响

    Figure  3.   Effect of bypass current on arc shape. (a) bypass current 0 A; (b) bypass current 75 A; (c) bypass current 115 A; (d) bypass current 155 A; (e) bypass current 195 A; (f) bypass current 360 A

    图  4   直壁墙体宏观形貌及金相取样位置

    Figure  4.   Macroscopic morphology of straight wall and sampling position of metallographic specimens. (a) macro morphology of straight wall; (b) sampling position of metallographic specimens

    图  5   直壁墙体不同部位的显微组织

    Figure  5.   Microstructure of straight wall in different parts. (a) bottom microstructure of straight wall; (b) middle microstructure of straight wall; (c) top microstructure of straight wall; (d) microstructure of interlayer junction of straight wall

    图  6   直壁墙体截面上的显微硬度分布曲线

    Figure  6.   Microhardness distribution curve on the section of straight wall

    表  1   基板和焊丝化学成分 (质量分数,%)

    Table  1   Chemical compositions of base metal and wire

    材料 C Mn Si S P Fe
    Q345 ≤0.2 ≤1.7 ≤0.5 ≤0.035 ≤0.035 余量
    ER50-6 0.1 1.54 0.9 0.02 0.18 余量
    下载: 导出CSV

    表  2   不同旁路电流对应的试验工艺参数

    Table  2   Test parameters corresponding to different bypass currents

    旁路电流
    Ip/A
    主丝电流
    Im/A
    主丝送丝速度vfm/(m·min−1) 边丝送丝速度vfs/(m·min−1) 焊接速度v/(m·min−1)
    0 360 6.5 5.8 1
    75 285 11 5.8 1
    115 245 9.5 5.8 1
    155 205 8 5.8 1
    195 165 5 5.8 1
    360 0 0 5.8 1
    下载: 导出CSV

    表  3   不同旁路电流下单道焊缝成形尺寸

    Table  3   Forming dimensions of single bead under different bypass currents

    旁路电流
    Ip/A
    熔宽
    W/mm
    熔深
    d/mm
    余高
    h/mm
    接触角
    θ/(°)
    0 7.90 2.40 5.60 98
    75
    115 7.02 2.02 5.12 88
    155 9.13 1.60 4.13 68
    195 9.80 1.55 3.45 49
    360 9.12 2.50 1.85 28
    下载: 导出CSV

    表  4   几种不同增材制造方法的连续沉积速率

    Table  4   Continuous deposition rate of several different additive manufacturing methods

    方法 填充材料 焊丝直径d/mm 送丝速度vs/(m·min−1) 沉积速率E/(kg·h−1)
    单丝GMA-AM H08Mn2Si焊丝 1.2 6 3.2
    单丝CMT-AM ER100高强钢焊丝 1.2 10 5.3
    串联双丝GMA-AM 17-4 PH不锈钢焊丝 1.2 9 9.5
    BCTW-GIA焊 ER50-6焊丝 1.6 (主丝);1.2 (两边丝) 8 (主丝);5.8 (两边丝) 13.3
    下载: 导出CSV
  • [1]

    Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B:Engineering, 2018, 143: 172 − 196. doi: 10.1016/j.compositesb.2018.02.012

    [2]

    Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917 − 1928. doi: 10.1007/s11665-014-0958-z

    [3] 耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17 − 21.

    Geng Haibin, Xiong Jiangtao, Huang Dan, et al. Research status and trend of wire arc additive manufacturing[J]. Welding & Joining, 2015(11): 17 − 21.

    [4]

    Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121.

    [5]

    Yang D, Wang G, Zhang G. A comparative study of GMAW-and DE-GMAW-based additive manufacturing techniques: thermal behavior of the deposition process for thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2175 − 2184. doi: 10.1007/s00170-016-9898-0

    [6]

    Wu W, Xue J, Yao P. A comparative study on single- and double-arc deposition processes[J]. Materials and Manufacturing Processes, 2020, 35(3): 346 − 353.

    [7]

    Miao Y, Li C, Yin C, et al. Joint characteristics of carbon steel bypass-current PAW on additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 61: 408 − 416. doi: 10.1016/j.jmapro.2020.10.014

    [8] 余淑荣, 程能弟, 黄健康, 等. 旁路耦合电弧增材制造热过程与组织关系[J]. 焊接学报, 2019, 40(8): 1 − 6.

    Yu Shurong, Cheng Nengdi, Huang Jiankang, et al. Relationship between thermal process and microstructure of bypass coupled arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 1 − 6.

    [9]

    Zuo W, Ma L, Lu Y, et al. Effects of solution treatment temperatures on microstructure and mechanical properties of TIG–MIG hybrid arc additive manufactured 5356 aluminum alloy[J]. Metals and Materials International, 2018, 24(6): 1346 − 1358. doi: 10.1007/s12540-018-0142-3

    [10]

    Li F, Chen S, Shi J, et al. Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures[J]. Applied Sciences, 2018, 8(2): 207. doi: 10.3390/app8020207

    [11]

    Fang D, Song G, Liu L. A novel method of triple-wire gas indirect arc welding[J]. Materials and Manufacturing Processes, 2016, 31(3): 352 − 358. doi: 10.1080/10426914.2015.1058949

    [12]

    Liu L, Fang D, Song G. Experimental investigation of wire arrangements for narrow-gap triple-wire gas indirect arc welding[J]. Materials and Manufacturing Processes, 2016, 31(16): 2136 − 2142. doi: 10.1080/10426914.2015.1090603

    [13]

    Liu L, Hu C, Yu S, et al. A triple-wire indirect arc welding method with high melting efficiency of base metal[J]. Journal of Manufacturing Processes, 2019, 44: 252 − 260. doi: 10.1016/j.jmapro.2019.05.022

    [14] 王泽力, 张天奕, 刁国宁, 等. 低碳钢三丝间接电弧焊传热机制及工艺性能[J]. 焊接学报, 2022, 43(1): 1 − 6. doi: 10.12073/j.hjxb.20210627001

    Wang Zeli, Zhang Tianyi, Diao Guoning, et al. Heat transfer mechanism and mechanical properties of triple-wire gas indirect arc welding for low carbon steel[J]. Transactions of the China Welding Institution, 2022, 43(1): 1 − 6. doi: 10.12073/j.hjxb.20210627001

    [15]

    Liu L, Yu S, Song G, et al. Analysis of arc stability and bead forming with high-speed TW-GIA welding[J]. Journal of Manufacturing Processes, 2019, 46: 67 − 76. doi: 10.1016/j.jmapro.2019.08.023

    [16] 于世宝, 赵中秋, 高忠林, 等. 脉冲频率对三丝间接电弧焊稳定性的影响[J]. 焊接学报, 2021, 42(2): 92 − 96. doi: 10.12073/j.hjxb.20180530003

    Yu Shibao, Zhao Zhongqiu, Gao Zhonglin, et al. Effect of pulse frequency on the stability of triple-wire indirect arc welding[J]. Transactions of the China Welding Institution, 2021, 42(2): 92 − 96. doi: 10.12073/j.hjxb.20180530003

    [17] 刁国宁, 徐国敏, 张天奕, 等. 焊丝伸出长度对三丝间接电弧焊稳定性和焊缝成形的影响[J]. 焊接学报, 2022, 43(3): 31 − 36. doi: 10.12073/j.hjxb.20210926001

    Diao Guoning, Xu Guomin, Zhang Tianyi, et al. Effect of wire extension on stability and bead formation of triple-wire gas indirect arc welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 31 − 36. doi: 10.12073/j.hjxb.20210926001

    [18]

    Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 417 − 423. doi: 10.1016/j.rcim.2012.09.011

    [19]

    Bourlet C, Zimmer-Chevret S, Pesci R, et al. Microstructure and mechanical properties of high strength steel deposits obtained by wire-arc additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 285: 116759. doi: 10.1016/j.jmatprotec.2020.116759

    [20]

    Martina F, Ding J, Williams S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel[J]. Additive Manufacturing, 2019, 25: 545 − 550. doi: 10.1016/j.addma.2018.11.022

图(6)  /  表(4)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  51
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回