Damage evolution model and numerical simulation of X70 pipeline steel of in-service welding
-
摘要: 以X70管线钢为研究对象,进行了不同温度和应变速率下的高温拉伸试验,获得了初始损伤阈值应变、临界损伤断裂应变、临界损伤值等损伤模型参数,建立了基于BONARO模型的损伤演化方程;模拟在役焊接损伤演化过程,并与在役焊接试验结果对比,研究介质压力、壁厚对在役焊接损伤演化行为的影响规律,研究发现在役焊接过程中,熔池下方内壁处最大熔深处后方1 ~ 2 mm区域为失效高风险区,损伤值在壁厚方向上由熔合线向内壁递减,管内介质压力的减小、壁厚的增大都会在一定程度上减小在役焊接过程中熔池下方的损伤值,从而减小烧穿失效的风险.Abstract: In this paper, X70 pipeline steel was taken as the research object. High temperature tensile tests were carried out at different temperatures and strain rates. Damage model parameters such as the threshold strain, critical damage strain and critical damage were obtained, and damage evolution equations based on BONARO model was established. The damage evolution process of in-service welding was simulated and compared with the experimental results of in-service welding. The influence rules of medium pressure and wall thickness on the damage evolution behavior of in-service welding were studied. It was found that: during the in-service welding process, molten pool below the maximum damage value of the inner wall is located in the largest fusion deep behind the 1mm to 2 mm area, damage value in thickness direction decreases from the fusion line to the inner wall; decreasing inner medium pressure and increasing the wall thickness can reduce the damage at the bottom of molten pool, thus reduce the risk of burn through.
-
Keywords:
- in-service welding /
- burn through /
- damage
-
-
表 1 在役焊接试验相关工艺参数
Table 1 Welding parameters of in-service welding
序号 焊接电流 I/A 焊接电压 U/V 焊接速度 v/(mm·s−1) 热输入 Q/(J·mm−1) 压力 P/MPa 烧穿情况 1 255 13.7 4 870 6.5 未烧穿 2 260 13.8 4 890 6.5 未烧穿 3 265 13.7 4 910 6.5 未烧穿 4 270 13.8 4 930 6.5 未烧穿 5 275 13.9 4 955 6.5 未烧穿 6 280 14.0 4 980 6.5 烧穿 表 2 损伤模型参数结果
Table 2 Damage model parameter results
温度T/K 应变速率0.1/s 应变速率1.0/s 初始损伤阈值应变 $ {\varepsilon }_{{\rm{th}}} $ 临界断裂应变 $ {\varepsilon }_{{\rm{cr}}} $ 断裂应力 $ {\sigma }_{{\rm{R}}} $ /MPa峰值应力 $ {\sigma }_{{\rm{u}}} $ /MPa临界损伤值 $ {D}_{{\rm{cr}}} $ 初始损伤阈值应变 $ {\varepsilon }_{{\rm{th}}} $ 临界断裂应变 $ {\varepsilon }_{{\rm{cr}}} $ 断裂应力 $ {\sigma }_{{\rm{R}}} $ /MPa峰值应力 $ {\sigma }_{{\rm{u}}} $ /MPa临界损伤值 $ {D}_{{\rm{cr}}} $ 1 273 0.163 0.256 77.3 115.3 0.33 0.161 0.250 96.4 139.7 0.31 1 373 0.143 0.263 39.3 63.4 0.38 0.168 0.257 63.1 97.0 0.35 1 473 0.131 0.257 25.9 45.6 0.43 0.153 0.251 42.4 70.7 0.40 1 573 0.123 0.252 20.4 38.4 0.47 0.143 0.246 30.8 55.1 0.44 -
[1] 刘永滨, 冯立德, 张季娜, 等. 天然气管道在役修补焊接过程中的数值模拟[J]. 焊接学报, 2019, 40(10): 111 − 115,120. Liu Yongbin, Feng Lide, Zhang Jina, et al. Numerical simulation on in-serve welding of natural gas pipeline[J]. Transactions of the China Welding Institution, 2019, 40(10): 111 − 115,120.
[2] 黄志强, 汤海平, 丁雅萍, 等. 天然气管道在役焊接温度场数值模拟[J]. 焊接学报, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143 Huang Zhiqiang, Tang Haiping, Ding Yaping, et al. Numerical simulation for in-service welding temperature field of gas pipeline[J]. Transactions of the China Welding Institution, 2018, 39(6): 29 − 34. doi: 10.12073/j.hjxb.2018390143
[3] Wu Q, Han T, Wang Y, et al. In-situ observation of high-temperature failure behavior of pipeline steel and investigation on burn-through mechanism during in-service welding[J]. Engineering Failure Analysis, 2019, 109(9): 104236.
[4] API 1104. Welding of pipelines and related facilities, appendix B: in service welding[S]. American petroleum institute, 2013.
[5] Cisilino A P, Chapetti M D, Ozegui J L, et al. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines[J]. International Journal of Pressure Vessels and Piping, 2002(79): 67 − 76.
[6] Matthew A B, William A B, et al. The effect of hoop stress on the burn through susceptibility during in-service welding of thin-walled pipelines[C]. Canada: 2008 7th International Pipeline Conference, 2009.
[7] 郭广飞. X70钢高压气管线在役焊接烧穿判据研究[D]. 青岛: 中国石油大学(华东), 2014. Guo Guangfei. Study on burn-through criterion of X70 high-pressure gas pipeline during in-service welding[D]. Qingdao: China university of petroleum(East China), 2014.
[8] Wu Qian, Han Tao, Wang Hongtao, et al. Burn-through prediction during in-service welding based on residual strength and high-temperature plastic failure criterion[J]. International Journal of Pressure Vessels and Piping, 2021, 189(9): 104280.
[9] Majnoun P, Ghavi M R, Vakili-Tahami F, et al. A new thermo-mechanical approach to predict "burn-through" during the in-service welding[J]. International Journal of Pressure Vessels and Piping, 2021, 194(3): 104558.
[10] Lemaitre J A. Continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107(1): 10783.
[11] Oyane M. Criteria of ductile fracture strain[J]. Jsme International Journal, 2008, 15(90): 1507 − 1513.
[12] Bonora N, Gentile D, Pirondi A, et al. Ductile damage evolution under triaxial state of stress: theory and experiments[J]. International Journal of Plasticity, 2005, 21(5): 981 − 1007. doi: 10.1016/j.ijplas.2004.06.003
[13] Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling[J]. Computational Materials Science, 2003, 26(2): 129 − 141.
[14] 杨超众. 316LN钢热成形开裂预报与损伤规律研究[D]. 上海: 上海交通大学, 2014. Yang Chaozhong. Research on fracture and damage condition for 316LN steel during hot deformation[D]. Shanghai: Shanghai Jiao Tong University, 2014.
[15] Bonora N, Ruggiero A, Esposito L, et al. CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters[J]. International Journal of Plasticity, 2006, 22(11): 2015 − 2047. doi: 10.1016/j.ijplas.2006.03.013
[16] Lemaitre J, Desmorat R. Engineering damage mechanics : ductile, creep, fatigue and brittle failures[M]. Germany: Springer, 2005.
[17] Yang H, Li Z H, Zhang Z L, et al. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, 7(8): 1453 − 1460.
[18] Mirzadeh H, Najafizadeh A. Flow stress prediction at hot working conditions[J]. Materials Science & Engineering A, 2010, 527(4-5): 1160 − 1164.
[19] Goldak J, Bibby M, Moore J, et al. Computer modeling of heat flow in welds[J]. Metallurgical Ttansactions B, 1986(17B): 587 − 600.
[20] Qian W, Yong W, Tao H, et al. Influence of internal corrosive defect on the burn-through of in-service welding on pipelines[J]. Journal of Pressure Vessel Technology, 2018, 140(4): 041701. doi: 10.1115/1.4039698
[21] Qian W, Yong W, Tao H, et al. Study on the failure mechanism of burn-through during in-service welding on gas pipelines[J]. Journal of Pressure Vessel Technology, 2019, 141(2): 024501. doi: 10.1115/1.4042461
-
期刊类型引用(0)
其他类型引用(3)