高级检索

激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能

田志刚, 李新梅, 秦忠, 杨现臣, 刘伟斌, 张培军

田志刚, 李新梅, 秦忠, 杨现臣, 刘伟斌, 张培军. 激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能[J]. 焊接学报, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001
引用本文: 田志刚, 李新梅, 秦忠, 杨现臣, 刘伟斌, 张培军. 激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能[J]. 焊接学报, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001
TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001
Citation: TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001

激光熔覆CoCrFeNiSix高熵合金涂层的组织与性能

基金项目: 国家自然科学基金资助项目(52161017,51865055);新疆维吾尔自治区自然科学基金资助项目(2022D01C386).
详细信息
    作者简介:

    田志刚,硕士;主要研究方向为高熵合金涂层;Email: 770639674@qq.com

    通讯作者:

    李新梅,教授,博士;Email: 35335499@qq.com.

  • 中图分类号: TG 401

Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding

  • 摘要: 为了探究Si元素含量对CoCrFeNiSix(x=0.5,1.0,1.5)高熵合金涂层的组织与性能的影响,采用激光熔覆技术制备高熵合金涂层,通过X射线衍射仪、扫描电子显微镜、能谱仪、显微硬度仪、摩擦磨损试验机、电化学工作站等表征了涂层的物相组成、微观组织以及元素分布、硬度值、耐磨性能和耐腐蚀性能. 研究表明,随着Si元素的含量增加,合金物相由单相面心立方结构转变为面心立方结构、Si元素化合物(σ)相结构,最后形成面心立方结构、体心立方结构和σ相混合结构.涂层的组织主要由柱状晶转变成树枝晶,最后形成胞状晶;同时,涂层的硬度不断提高,当Si含量为1.5时,涂层的平均硬度值达到最高,为619.04 HV0.2,约为基体的2.67倍.涂层的磨损量、摩擦系数随着Si含量的增加而减少,耐磨性能显著提高.涂层在3.5%NaCl溶液中腐蚀性能随着Si含量的增加先增加后降低,当Si含量为1.0时,涂层的耐腐蚀性能最优.
    Abstract: In order to investigate the effect of Si content on the microstructure and properties of CoCrFeNiSix (x=0.5, 1.0, 1.5) high-entropy alloy coating, the high-entropy alloy coating was prepared by laser cladding technology. The phase composition, microstructure, element distribution, hardness value, wear resistance and corrosion properties of the coating were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectroscopy, microhardness tester, friction and wear tester, and electrochemical workstation. The results show that with the increase of Si content, the alloy phase changes from single-phase face-centered cubic structure to face-centered cubic structure, silicon compound (σ) phase structure, and finally form face-centered cubic structure, body-centered cubic structure and σ mixed structure. The microstructure of the coating mainly changes from columnar crystals to dendritic crystals and finally to cellular crystals. At the same time, the hardness of the coating also increases. When the Si content is 1.5, the average hardness of the coating reaches 619.04 HV0.2, which is about 2.67 times that of the substrate. The wear amount and friction coefficient of the coating decreased with the increase of Si content, and the wear resistance of the coating increased significantly. In 3.5%NaCl solution, the corrosion performance of the coating increases first and then decreases with the increase of Si content. When Si content is 1.0, the corrosion performance of the coating is optimal.
  • 近年来铝及铝合金在航空航天领域得到广泛应用[1-3]. 氩弧焊由于其焊后接头质量好、工艺稳定性强、焊接可达性好,广泛用于焊接易氧化、化学性质活泼的铝合金[4-5]. 而在实际应用中,由于铝合金焊接过程中工件表面氧化膜受到阻热作用,严重影响铝合金焊接效率. 利用铝合金氩弧焊交流反接时的“阴极雾化”作用虽然可以保证焊接质量,但是铝合金氩弧焊反接时钨电极烧损严重,并且电弧产热主要集中在阳极,这导致电弧能量的利用效率降低,从而降低了熔深. 通过电源正负半波比例的优化也不能完全消除这一局限,而氦弧焊不仅出现了氧化膜撕裂的现象,使氧化膜破碎、汽化,同时还增加了阳极热功率[6],为彻底突破这一限制提供了可能性. 文中以实际焊接过程中热量传输效率为切入点,阐明了氦弧焊特有氧化膜撕裂现象的产生机理,分析了气体流量对氧化膜撕裂程度及电弧能量利用效率的影响,建立了熔池液面微分方程,为铝合金非熔化极直流正接氦弧焊的推广奠定了理论基础.

    试验选用的5083铝合金板材规格为720 mm × 190 mm × 12 mm,母材的化学成分如表1所示.

    表  1  母材化学成分及含量(质量分数,%)
    Table  1.  Chemical composition of base metal
    MgMnCrCuZnFeAl
    4.0 ~ 4.90.4 ~ 1.00.05 ~ 0.250 ~ 0.10 ~ 0.250 ~ 0.4余量
    下载: 导出CSV 
    | 显示表格

    试验采用直流正接的极性接法进行平板堆焊,同时通过CP80-3-M-540高速相机观察焊接过程中的电弧形态及熔池氧化膜撕裂过程,相机的频率设定为1 000 Hz,拍摄熔池氧化膜撕裂时加装808 nm波长滤光片以滤除弧光,并搭配808 nm的激光背景光源,保护气体为99.995%的纯氦气,焊接工艺试验主要参数如表2所示.

    表  2  试验主要工艺参数
    Table  2.  Processing parameters of experiment
    焊接速度v/(mm·min−1)钨针直径
    d/mm
    气体流量
    Q/(L·min−1)
    针尖到工件
    距离S/mm
    焊接电流
    I/A
    3003.010 ~ 203180
    下载: 导出CSV 
    | 显示表格

    与氩弧形貌不同的是氦弧的形貌呈倒扣碗状,这是由于氦原子分子量较小,更容易受电弧粒子热运动的干扰. 试验过程中得到的电弧及熔池氧化膜撕裂分别如图1图2所示. 高速摄影观测到铝合金氧化膜首先在熔池前端中心尖角撕裂,然后整个熔池表面氧化膜被缓慢推向熔池边缘,直至氧化膜堆叠至达到新的平衡状态并出现新的尖角撕裂,如此在整个焊接过程中循环往复,且随着气体流量的增加,氧化膜撕裂程度减小.

    图  1  不同气体流量下氦弧形态
    Figure  1.  Arc morphology under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  2  不同氦气流量下氧化膜撕裂情况展示
    Figure  2.  Oxide film tearing under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min

    氦弧焊氧化膜撕裂现象降低了电弧与熔池之间的热阻,假设电弧周围达到了局部热力学平衡状态以简化讨论. 氦弧至熔池的热阻$\mathop R\nolimits_{{\rm{int}}}$包括氧化膜热阻以及弧液界面两部分,氧化膜热阻${R_{{\rm{oxi}}}}$由辐射热阻$\mathop R\nolimits_{{\rm{oxi}}}^{{\rm{rad}}}$和传导热阻$R_{{\rm{oxi}}}^ {\rm{c}}$共同确定. 影响氧化膜热阻的因素较多,主要包括氧化膜的类别、特性和厚度、界面冷却速率等,且由于研究条件和方法不尽相同,所得的结论也略有差异[7-8]. 对于最终的电弧能量利用效率,选用单位时间内用来熔化被焊金属的有效热量与设备输出功率之比来表征,即

    $$ E_{{\rm{f}}} = \frac{{c\Delta T\displaystyle\iint\limits_\varOmega {v{\rm{d}}x{\rm{d}}y}}}{{UI}} $$ (1)

    式中:Ω为焊缝闭合轮廓线;$ v $为焊接速度;c为材料热容; ΔT为材料熔点与环境温度的差值;U为电弧电压.

    焊缝横截面结果如图3所示,利用Image-Pro Plus软件对焊缝横截面外轮廓进行特征提取并代入式(1)进一步计算,测量及计算结果如图4所示,其中相对能量效率于20 L/min时最大.

    图  3  不同气流量下焊缝横截面形貌
    Figure  3.  Weld morphology of cross section under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  4  氦弧焊焊缝横截面测量结果
    Figure  4.  Measuring results of the weld

    熔池深度、深宽比、电弧能量效率均随气体流量增加而增大. 氦弧与熔池间强制对流换热系数Nux会随着气流速度增大而增大,故随着气体流量增加氧化膜撕裂程度虽然减小,电弧相对能量利用效率却提高.

    $$ N{u_{{x}}} = 0.338\,\,7{{\mathop{R}\nolimits} _{\rm{e}}}^{1/2}{{\mathop{P}\nolimits} _{\rm{r}}}^{1/3}\bigg/{\left[ {1 - {{\left( {\frac{{0.046\,\,8}}{{{{\mathop{\rm P}\nolimits} _{\rm{r}}}}}} \right)}^{2/3}}} \right]^{1/4}} $$ (2)

    式中:普朗克数Pr对于气体约等于1;雷诺数Re会随着气流速度增大而增大.

    能够影响电弧的基本作用力有电弧压力$ P $、电弧剪切力$ \tau $、电磁力T、表面张力$ \sigma $、重力G、浮力N、气体压力$ f $[9-10],此处电弧压力是等离子体在工件表面被俘的粘滞压力,与气体压力相区别. 氦弧焊阳极区热功率比氩弧焊提高了一倍[1],电弧温度尤其是阳极区温度对比氩弧有极大提高. 从公式(3)可知,对于剪切力,氦弧为牛顿流体,则氦气的动力粘度 $ \mu $ 随温度升高而增加,故而在相同电流及气体流量情况下电弧剪切力比氩弧明显提升. 此外随着气体流量增加导致强制对流换热系数增大,熔池整体温度提高,熔池中心指向熔池边缘的表面张力随着电弧温度由边缘向中心的升高而下降,因此熔池中心的氧化膜化学键结合强度较低,更容易被撕裂. 也就是说,由熔池中心向熔池边缘会形成由易到难的不同程度的氧化膜撕裂,导致氧化膜破碎,最终在电弧高温下不断汽化.

    $$ \tau {\text{ = }}\mu \frac{{\partial v}}{{\partial y}}{|_{y = 0}} $$ (3)

    无脉冲直流正接氦弧焊熔池震荡并不明显,对于液面的确定文中主要采用静力学平衡方程. 对于氦弧焊熔池液面的确定,取液面与垂直面的交线,令液面与水平方向夹角为$ \alpha $,电弧粒子速度与水平方向夹角$ \alpha ' $,则对于液面与垂直面的交线有静力学平衡方程,即

    $$ \left\{ \begin{gathered} {{N}}\cos \alpha + \sigma \sin \alpha + P\cos \alpha + f\cos \alpha ' - T\sin \alpha = 0 \hfill \\ N\cos \alpha + \sigma \cos \alpha + P\sin \alpha + f\sin \alpha ' - T\cos \alpha = 0 \hfill \\ \end{gathered} \right. $$ (4)

    Mendez等人[11]用数量级缩放法对TIG电弧等离子体速度及电弧压强分布函数做了定量刻画,有

    $$ \left\{ \begin{array}{l} {Z_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.058}{\left( {h/{R_{\rm{c}}}} \right)^{0.34}}{{\hat Z}_{\rm{S}}}\\ {V_{\rm{RS}}} = 0.88{R_{\rm{e}}}^{ - 0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.086}}{{\hat V}_{{\rm{RS}}}}\\ {V_{{\rm{ZS}}}} = 0.88{R_{\rm{e}}}^{0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.008\,\,6}}{{\hat V}_{{\rm{RS}}}}\\ {P_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.017}{\left( {h/{R_{\rm{c}}}} \right)^{ - 0.057}}{{\hat V}_{{\rm{RS}}}} \end{array} \right. $$ (5)

    $$ \left\{ \begin{array}{l} {{\hat Z}_{\rm{S}}} = \dfrac{1}{2}{R_{\rm{c}}}\\ {{\hat V}_{{\rm{RS}}}} = {{\hat V}_{{\rm{ZS}}}} = \dfrac{1}{2}\dfrac{{{\mu _0}^{1/2}{R_{\rm{C}}}^2{J_{\rm{C}}}^2}}{{{\rho ^{1/2}}}}\\ {{\hat P}_{\rm{S}}} = \dfrac{1}{2}{\mu _0}{R_{\rm{C}}}^2{J_{\rm{C}}}^2 \end{array} \right. $$ (6)

    式中:$ {\mu _0} $为保护气体的真空磁导率;${R_{\rm{C}}}$为钨针端头直径;${J_{\rm{C}}}$为钨针端头电流密度;h为熔池液面下凹高度. ${Z_{\rm{S}}}$为钨针轴坐标修正值;${\hat Z_{\rm{S}}} $为钨针轴坐标理论估计值;${V_{{\rm{RS}}}}$为电弧等离子体径向速度修正值;${{\hat V}_{{\rm{RS}}}}$为电弧等离子体径向速度理论估计值;$V_{\rm{ZS}} $为电弧等离子体轴向速度修正值;${{\hat V}_{{\rm{ZS}}}} $为电弧等离子体轴向速度理论估计值;PS为压强. 又单位面积内$f = 2/3 n\overline E$$ \overline E $为粒子平均动能. 电弧气氛与大气联通,粒子密度近似为定值,代入联立式(4)~式(6),可得熔池液面与垂直面交线微分方程为

    $$ \frac{{{\rm{d}}y}}{{{\rm{d}}x}} = {{R_{\rm{e}}} ^{0.198}}{(h/{R_{\rm{c}}})^{ - 0.154}} $$ (7)

    从公式(7)可知,在距离熔池中心相同距离处,气体流量的增加导致雷诺数${R_{\rm{e}}}$的增加,要使熔池达到新的平衡,只能使h降低,即熔池液面继续下凹取得更大斜率. 也就是说,液面随气体流量增大下凹程度增加,氧化膜撕裂程度随气体流量增加而减小.

    有研究[12]发现氧化物在熔池表面电弧高温情况下存在解离现象,熔池液面表面张力温度系数实际为正. 气体流量增加增大了电弧与熔池之间强制对流换热系数,在熔池中心温度升高,由熔池边缘指向熔池中心的表面张力增强,导致氧化膜的撕裂程度的减小.

    (1) 氦弧焊阳极热功率的增加削弱了氧化膜之间化学键强度,相对于氩弧焊提高了动力粘度进而增大了电弧剪切力,产生了氧化膜撕裂现象.

    (2) 在试验参数范围内随着气体流量增加氧化膜撕裂程度减小,但焊缝深宽比以及电弧能量效率提高.

    (3) 熔池液面下凹程度增大及熔池中心至边缘表面张力减小,使得氧化膜撕裂程度随氦气流量增加而减弱.

  • 图  1   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的单道截面

    Figure  1.   Single channel cross section of CoCrFeNiSix (x=0.5, 1.0, 1.5) high-entropy alloy coating. (a) x = 0.5; (b) x = 1.0; (c) x = 1.5

    图  2   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的XRD衍射图谱

    Figure  2.   XRD patterns of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coatings. (a) X-ray diffraction pattern; (b) partial magnification of the main peak

    图  3   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层原子的混合焓和原子半径

    Figure  3.   Mixing enthalpy and atomic radius of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating atoms

    图  4   不同高熵合金的微观组织形貌

    Figure  4.   Microstructure morphology of different high-entropy alloy. (a) CoCrFeNiSi0.5; (b) CoCrFeNiSi0.5 (high magnification); (c) CoCrFeNiSi1.0; (d) CoCrFeNiSi1.0 (high magnification); (e) CoCrFeNiSi1.5; (f) CoCrFeNiSi1.5 (high magnification)

    图  5   CoCrFeNiSi1.0高熵合金面扫描和元素分布

    Figure  5.   Surface scanning and element distribution of CoCrFeNiSi1.0 high-entropy alloy. (a) CoCrFeNiSi1.0; (b) Co element; (c) Cr element; (d) Fe element; (e) Ni element; (f) Si element

    图  6   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层硬度

    Figure  6.   Hardness of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    图  7   基体和CoCrFeNiSix (x = 0.5,1.0,1.5) 高熵合金涂层磨损量与摩擦系数

    Figure  7.   Wear and friction coefficient of matrix and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    图  8   CoCrFeNiSix (x = 0.5, 1.0, 1.5) 高熵合金涂层磨损量与硬度关系

    Figure  8.   Relationship between wear amount and hardness of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    图  9   基体和CoCrFeNiSix (x = 0.5, 1.0, 1.5)高熵合金磨损三维轮廓

    Figure  9.   Matrix and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy wear 3D profile. (a) matrix; (b) x = 0.5; (c) x = 1.0; (d) x = 1.5

    图  10   基体和CoCrFeNiSix (x = 0.5, 1.0, 1.5)高熵合金涂层磨损形貌

    Figure  10.   Wear morphology of matrix and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coatings. (a) matrix; (b) matrix (high magnification); (c) CoCrFeNiSi0.5; (d) CoCrFeNiSi0.5 (high magnification); (e) CoCrFeNiSi1.0; (f) CoCrFeNiSi1.0 (high magnification); (g) CoCrFeNiSi1.5; (h) CoCrFeNiSi1.5 (high magnification)

    图  11   基体与CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的动电位极化曲线

    Figure  11.   Potentiodynamic polarization curves of matrix and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    图  12   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的Nyquist图、Bode图与拟合等效电路图

    Figure  12.   Nyquist diagram, Bode diagram and fitting equivalent circuit diagram of CoCrFeNiSix (x = 0.5,1.0,1.5) high-entropy alloy coating. (a) Nyquist diagram; (b) Bode diagram; (c) fitting equivalent circuit diagram

    图  13   基体和CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层在3.5%NaCl溶液中电化学腐蚀形貌

    Figure  13.   Electrochemical corrosion morphology of substrate and CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating in 3.5%NaCl solution. (a) matrix; (b) matrix (high magnification); (c) CoCrFeNiSi0.5; (d) CoCrFeNiSi0.5 (high magnification); (e) CoCrFeNiSi1.0; (f) CoCrFeNiSi1.0 (high magnification); (g) CoCrFeNiSi1.5; (h) CoCrFeNiSi1.5 (high magnification)

    表  1   试验工艺参数

    Table  1   Experimental process parameters

    激光功率
    P/kW
    扫描速度
    v/(mm·s−1)
    光斑直径
    d/mm
    搭接率
    η(%)
    1.16250
    下载: 导出CSV

    表  2   CoCrFeNiSix (x = 0.5, 1.0, 1.5) 高熵合金涂层的价电子浓度

    Table  2   Valence electron concentrations of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coatings

    x价电子浓度VEC
    0.57.78
    1.07.40
    1.57.09
    下载: 导出CSV

    表  3   CoCrFeNiSix (x = 0.5, 1.0, 1.5)的EDS分析(原子分数, %)

    Table  3   EDS analysis of CoCrFeNiSix (x = 0.5, 1.0, 1.5)

    x区域CoCrFeNiSi
    0.5设计含量22.2222.2222.2222.2211.10
    A20.8622.8327.6217.3711.32
    B18.1122.5622.5120.8415.98
    1.0设计含量2020202020
    C16.4916.3042.9313.2611.02
    D14.9114.7733.5818.1918.55
    x = 1.5设计含量18.1818.1818.1818.1827.27
    E6.316.8133.635.2647.99
    F8.1915.1739.249.0028.40
    下载: 导出CSV

    表  4   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金磨损形貌EDS分析(原子分数,%)

    Table  4   EDS analysis of wear morphology of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy

    x位置CoCrFeNiSiO
    0.5G8.146.9227.977.812.5546.60
    1.0H5.595.3828.975.253.8750.94
    1.5J5.866.4822.725.248.7550.95
    下载: 导出CSV

    表  5   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层的电化学参数

    Table  5   Electrochemical parameters of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    合金腐蚀电位
    Ecorr /mV
    自腐蚀电流密度
    icorr /(10−2A·cm−2)
    基体−1 042.18032.8
    CoCrFeNiSi0.5−997.0631.92
    CoCrFeNiSi1.0−955.3911.39
    CoCrFeNiSi1.5−1 039.3423.37
    下载: 导出CSV

    表  6   CoCrFeNiSix (x = 0.5,1.0,1.5)高熵合金涂层电化学阻抗拟合结果

    Table  6   Electrochemical impedance fitting results of CoCrFeNiSix (x = 0.5, 1.0, 1.5) high-entropy alloy coating

    合金溶液电阻Rs钝化膜电容CPE1 /10−6F钝化膜电阻Rf /103Ω涂层的电容CPE2 /10−6F电荷转移电阻Rct /102Ω
    基体6.04539.580.047 91.9311.632
    CoCrFeNiSi0.51.39216.830.011 08.50739.62
    CoCrFeNiSi1.09.4019.6980.007 15.86949.05
    CoCrFeNiSi1.58.8313.430.513 531.9638.35
    下载: 导出CSV
  • [1]

    Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys[J]. Advanced Engineering Materials, 2004, 6: 299 − 303. doi: 10.1002/adem.200300567

    [2]

    Chang Xuejiao, Zeng Mengqi, Liu Keli, et al. Phase engineering of high-entropy alloys[J]. Advanced Materials, doi: 10.1002/adma.201907226.

    [3] 张杨, 艾云龙, 陈卫华, 等. 基于相结构的高熵合金设计[J]. 特种铸造及有色合金, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007

    Zhang Yang, Ai Yunlong, Chen Weihua, et al. Design of high entropy alloy based on the phase structure[J]. Special Casting & Non-Ferrous Alloys, 2021, 41(1): 37 − 42. doi: 10.15980/j.tzzz.2021.01.007

    [4]

    Tsai Minghung, Li Jianhong, Fan Anchen, et al. Incorrect predictions of simple solid solution high entropy alloys: cause and possible solution[J]. Scripta Materialia, 2017, 127: 6 − 9. doi: 10.1016/j.scriptamat.2016.08.024

    [5]

    Torbati-Sarraf H, Mitra Shabani, Paul D, et al. The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi high entropy alloy at different temperatures[J]. Materials & Design, 2019, 184: 108170.

    [6]

    Liu H, Sun S, Zhang T, et al. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J]. Surface and Coatings Technology, 2020, 405(10): 126522.

    [7]

    Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys[J]. Materials Letters, 2021, 282(12815): 128809.

    [8] 温晓灿, 张凡, 雷智锋, 等. 高熵合金中的第二相强韧化[J]. 中国材料进展, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06

    Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys[J]. Progress in Materials China, 2019, 38(3): 242 − 250. doi: 10.7502/j.issn.1674-3962.2019.03.06

    [9] 牛利冲, 李杰, 赵思杰, 等. FeCoNiCrMn系高熵合金变形机制的研究进展[J]. 中国有色金属学报, 2022, 32(8): 2316 − 2326.

    Niu Lichong, Li Jie, Zhao Sijie, et al. Research progress on deformation mechanism of FeCoNiCrMn high entropy alloy system[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2316 − 2326.

    [10]

    Gu Zhen, Xi Shengqi, Sun Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2020, 819: 152986 − 152995. doi: 10.1016/j.jallcom.2019.152986

    [11]

    Liu Kui, Wang Zhenhua, Yin Zengbin, et al. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering[J]. Ceramics International, 2018, 44(15): 18711 − 18718. doi: 10.1016/j.ceramint.2018.07.100

    [12]

    Fang Wei, Yu Haoyang, Chang Ruobin, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration[J]. Materials Chemistry and Physics, 2019, 238: 121897 − 121903. doi: 10.1016/j.matchemphys.2019.121897

    [13]

    Ma Minyu, Han Aihua, Zhang Zunjun, et al. The role of Si on microstructure and high-temperature oxidation of CoCr2FeNb0.5Ni high-entropy alloy coating[J]. Corrosion Science, 2021, 185: 109417.

    [14]

    Chandrakar R, Kumar A, Chandraker S, et al. Microstructural and mechanical properties of AlCoCrCuFeNiSix (x = 0 and 0.9) high entropy alloys[J]. Vacuum:Technology Applications & Ion Physics:the International Journal & Abstracting Service for Vacuum Science & Technology, 2021, 184: 184 − 189.

    [15] 韩显柱, 杨义成, 张彦东, 等. 激光同轴送粉熔覆工艺特性研究[J]. 金属加工(热加工), 2021(8): 9 − 13.

    Han Xianzhu, Yang Yicheng, Zhang Yandong, et al. Research on forming characteristics of laser coaxial powder feeding cladding[J]. Metal Working (Hot Working), 2021(8): 9 − 13.

    [16]

    Aghili S E, Shamanian M, Najafabadi R A, et al. Microstructure and oxidation behavior of NiCr-chromium carbides coating prepared by powder-fed laser cladding on titanium aluminide substrate[J]. Ceramics International, 2020, 46(2): 1668 − 1679.

    [17] 郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(5): 87 − 94.

    Hao Wenjun, Sun Ronglu, Niu Wei, et al. Microstructure and properties of CoCrFeNiSix high entropy alloy coatings by laser cladding[J]. Surface Technology, 2021, 50(5): 87 − 94.

    [18]

    Tsai M H, Hao Y, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy[J]. Intermetallics, 2013, 33: 81 − 86. doi: 10.1016/j.intermet.2012.09.022

    [19] 刘昊, 高强, 郜文鹏, 等. 激光熔覆CoCrFeNiNb(x)高熵合金涂层的高温摩擦磨损性能[J]. 摩擦学学报, 2022, 42(5): 966 − 977.

    Liu Hao, Gao Qiang, Gao Wenpeng, et al. Friction and wear properties of CoCrFeNiNb(x) high entropy alloy coating by laser cladding at high temperature[J]. Tribology Journal, 2022, 42(5): 966 − 977.

    [20] 刘昊, 高强, 满家祥, 等. 激光熔覆CoCrFeMnNiTix高熵合金涂层的微观组织及性能研究[J]. 中国激光, 2022, 49(8): 18 − 29.

    Liu Hao, Gao Qiang, Man Jiaxiang, et al. Microstructure and properties of CoCrFeMnNiTix High Entropy Alloy Coatings by laser cladding[J]. China Laser, 2022, 49(8): 18 − 29.

    [21] 董世知, 孟旭, 马壮等. WC和Al2O3对氩弧熔覆FeAlCoCrCuTi0.4高熵合金涂层组织和耐冲蚀性能影响[J]. 焊接学报, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194

    Dong Shizhi, Meng Xu, Ma Zhuang et al. Effect of WC and Al2O3 on microstructure and erosion resistance of FeAlCoCrCuTi0.4 High Entropy Alloy coated by argon arc cladding[J]. Transactions of the China Welding Institution, 2019, 40(7): 127 − 132. doi: 10.12073/j.hjxb.2019400194

    [22]

    Liang M L, Wang C L, Liang C L, et al. Microstructure and sliding wear behavior of FeCoNiCr0.8Al0.2 high-entropy alloy for different durations[J]. International Journal of Refractory Metals and Hard Materials, 2021, 103: 105767.

    [23]

    Kong D, Wang W, Zhang T, et al. Effect of superheating on microstructure and wear resistance of Al1.8CrCuFeNi2 high-entropy alloy[J]. Materials Letters, 2022, 311: 131613. doi: 10.1016/j.matlet.2021.131613

    [24]

    Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: the role of Mo[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105721 − 105731. doi: 10.1016/j.ijrmhm.2021.105721

    [25] 苏允海, 梁学伟, 邓越, 等. FeAlCuCrNiNbx系高熵合金堆焊层的组织及性能分析[J]. 焊接学报, 2020, 41(4): 38 − 43.

    Su Yunhai, Liang Xuewei, Deng Yue, et al. Microstructure and property analysis of FeAlCuCrNiNbx high entropy alloy surfacing layer[J]. Transactions of the China Welding Institution, 2020, 41(4): 38 − 43.

    [26]

    Aliyu Ahmed, Srivastava Chandan. Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings[J]. Surface & Coatings Technology, 2022, 429(15): 127943 − 127955.

图(13)  /  表(6)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  124
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2022-12-24

目录

/

返回文章
返回