高级检索

焊缝余高对铜镍合金管材腐蚀行为的影响

张威, 刘峰, 李相波, 程旭东, 苏艳, 邵刚勤

张威, 刘峰, 李相波, 程旭东, 苏艳, 邵刚勤. 焊缝余高对铜镍合金管材腐蚀行为的影响[J]. 焊接学报, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001
引用本文: 张威, 刘峰, 李相波, 程旭东, 苏艳, 邵刚勤. 焊缝余高对铜镍合金管材腐蚀行为的影响[J]. 焊接学报, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001
ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001
Citation: ZHANG Wei, LIU Feng, LI Xiangbo, CHENG Xudong, SU Yan, SHAO Gangqin. Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 115-121. DOI: 10.12073/j.hjxb.20220302001

焊缝余高对铜镍合金管材腐蚀行为的影响

基金项目: 西南技术工程研究所合作基金项目(HDHDW5902020101)
详细信息
    作者简介:

    张威,硕士. 主要研究海水管道冲刷腐蚀电化学行为. Email: 609643423@qq.com

    通讯作者:

    邵刚勤,研究员. 主要从事特种无机新材料结构构建与解析. Email: gqshao@whut.edu.cn.

  • 中图分类号: TG 405; TG 174.3

Influence of weld reinforcements on corrosion behavior of Cu-Ni alloy pipe

  • 摘要: 海水管道焊缝下游区是发生腐蚀的热点区域. 为探究B30管道焊缝余高对与其下游区腐蚀行为的影响,利用原位电化学测试装置和自制循环海水冲刷装置,在3 天、7 天、15 天、30 天4个冲刷节点进行试验. 测试了3种模拟焊缝余高(0 mm;0.5 mm;1.5 mm)在紧邻热影响区和下游30 mm处母材区的电化学阻抗谱,用扫描电镜观察了试样表面的腐蚀形貌,结合COMSOL软件建立了有限元仿真流态模型,探讨了余高对介质流态的影响. 结果表明, 在有焊缝情况下,热影响区和母材区阻抗值均小于无焊缝结构,焊缝结构会加速下游区的腐蚀,且余高越大,腐蚀倾向也越大;热影响区腐蚀速率均大于母材区;流态模型显示出在热影响区位置出现了涡流,涡流加速了热影响区的腐蚀.
    Abstract: The downstream area of seawater pipeline welds is a hot spot for corrosion. In order to explore the influence of weld reinforcements on the corrosion behavior of B30 pipes in the downstream area, the in-situ electrochemical testing device and the home-made circulating seawater-scouring device were used in four scouring-test nodes at 3 d, 7 d, 15 d, 30 d. The impedance spectra were tested with three simulated weld reinforcements (0 mm; 0.5 mm; 1.5 mm) in the adjacent heat-affected zone (HAZ) and 30-mm-downstream base-metal zone (BMZ). The corrosion morphology of the sample surface was observed by the scanning electron microscope (SEM), and the finite-element-simulation flow-model was established by using COMSOL software. The influence of weld reinforcements on the flow state of the medium was discussed. Results show that the impedance values in the HAZ and BMZ were smaller than those of the no-welding in the case of welding. The weld structure would accelerate the corrosion in the downstream zone. The larger the reinforcement, the greater the corrosion tendency. The corrosion rate in the HAZ was larger than that in the BMZ. The flow model showed that an eddy current appeared in the HAZ and accelerated the corrosion there.
  • 图  1   电化学测试装置示意图

    Figure  1.   Schematic diagram of the electrochemical testing device

    图  2   在不同时间、模拟焊缝余高为1.5 mm时的热影响区的SEM形貌

    Figure  2.   Surface SEM morphology of HAZ with the simulated 1.5 mm weld reinforcement. (a) 3 day; (b) 7 day; (c) 15 day; (d) 30 day

    图  3   在不同时间、模拟焊缝余高为1.5 mm时的母材区

    Figure  3.   Surface SEM morphology of BM with the simulated 1.5 mm the weld reinforcement at different time. (a) 3 day; (b) 7 day; (c) 15 day; (d) 30 day

    图  4   模拟焊缝余高为1.5 mm时的热影响区和母材区的电化学阻抗谱

    Figure  4.   Electrochemical impedance spectroscopy of HAZ with the simulated 1.5 mm weld reinforcement and the BMZ. (a) Nyqusit diagram of HAZ; (b) Bode diagram of HAZ; (c) Nyqusit diagram of BMZ; (d) Bode diagram of BMZ

    图  5   模拟焊缝余高为0.5 mm时的热影响区和母材区的电化学阻抗谱

    Figure  5.   Electrochemical impedance spectroscopy of HAZ with the simulated 0.5 mm weld reinforcement and the BMZ. (a) Nyqusit diagram of HAZ; (b) Bode diagram of HAZ; (c) Nyqusit diagram of BMZ; (d) Bode diagram of BMZ

    图  6   无模拟焊缝的热影响区和母材区的电化学阻抗谱

    Figure  6.   Electrochemical impedance spectroscopy of HAZ without a simulated weld reinforcement and BMZ. (a) Nyqusit diagram of HAZ; (b) Bode diagram of HAZ; (c) Nyqusit diagram of BMZ; (d) Bode diagram of BMZ

    图  7   在第30天时、不同余高的模拟焊缝的热影响区和母材区的阻抗值

    Figure  7.   Electrochemical impedance spectroscopy of HAZ with different simulated weld reinforcements and BMZ at 30 day

    图  8   仿真模型

    Figure  8.   Simulation model

    图  9   余高为0.5 mm的流场仿真图

    Figure  9.   Flow field simulation diagram with the 0.5 mm weld reinforcement

    图  10   余高为1.5 mm的流场仿真图

    Figure  10.   Flow field simulation diagram with the 1.5 mm weld reinforcement

    图  11   不同余高的涡量分布

    Figure  11.   Vortex distribution under different reinforcements

    图  12   模拟焊缝下游区的速率分布

    Figure  12.   Velocity distribution in the downstream zone of the simulated weld

  • [1] 张文毓. 船舶海水管系腐蚀与防护[J]. 船舶物资与市场, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012

    Zhang Wenyu. Corrosion and protection of marine pipelines[J]. Marine Equipment, 2019, 10: 11 − 16. doi: 10.3969/j.issn.1006-6969.2019.05.012

    [2] 姬升阳, 王长罡, 蔡伟, 等. 溪洛渡水电站铜镍合金冷却器腐蚀机理研究[J]. 水电站机电技术, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019

    Ji Shengyang, Wang Changgang, Cai Wei, et al. Research on corrosion mechanism of copper-nickel alloy cooler of Xiluodu hydropower station[J]. Mechanical Electrical Technique of Hydropower Station, 2019, 42(7): 71 − 75. doi: 10.13599/j.cnki.11-5130.2019.07.019

    [3]

    Jin T, Zhang W, Li N, et al. Surface characterization and corrosion behavior of 90/10 copper-nickel alloy in marine environment[J]. Materials, 2019, 12(11): 1869 − 1873. doi: 10.3390/ma12111869

    [4]

    Ahmed W H, Bello M M, El Nakla M, et al. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions[J]. Nuclear Engineering and Design, 2012, 252: 52 − 67. doi: 10.1016/j.nucengdes.2012.06.033

    [5]

    Si X, Si H, Li M, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation[J]. Materials and Corrosion, 2020, 71(10): 1637 − 1650. doi: 10.1002/maco.201911373

    [6]

    Gu Y, Xiao F, Zhou Y, et al. Behaviors of embrittlement and softening in heat affected zone of high strength X90 pipeline steels[J]. Soldagem & Inspecao, 2019, 24(1): 13 − 22.

    [7]

    Zhang Y, Feng X, Song C, et al. Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy[J]. MRS Communications, 2019, 9(1): 251 − 257. doi: 10.1557/mrc.2018.211

    [8]

    Sun B, Ye T, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions[J]. Materials, 2015, 8(9): 6029 − 6042. doi: 10.3390/ma8095290

    [9] 魏仁超, 许凤玲, 蔺存国, 等. 远青弧菌、硫酸盐还原菌及其混合菌种作用下B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204

    Wei Renchao, Xu Fengling, Lin Cunguo, et al. Corrosion behavior of B10 alloy exposed to seawater containing vibrio azureus sulfate-reducing bacteria, and their mixture[J]. Acta Metallurgica Sinica, 2014, 50(12): 1461 − 1470. doi: 10.11900/0412.1961.2014.00204

    [10]

    Hu X, Barker R, Neville A, et al. Case study on erosion-corrosion degradation of pipework located on an offshore oil and gas facility[J]. Wear, 2011, 271(9-10): 1295 − 1301. doi: 10.1016/j.wear.2011.01.036

    [11] 王刚, 张强编著. 流体力学[M]. 北京: 北京理工大学出版社, 2019.

    Wang Gang, Zhang Qiang. Fluid Mechanics[M]. Beijing: Beijing Institute of Technology Press, 2019.

  • 期刊类型引用(1)

    1. 李力,王一轩,罗芬,张文涛,赵巍,李小强. 钎焊时间对TiH_2-65Ni+TiB_2钎料钎焊连接TiAl合金接头的影响. 机械工程学报. 2024(08): 176-185 . 百度学术

    其他类型引用(1)

图(12)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  47
  • PDF下载量:  46
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-03-01
  • 网络出版日期:  2022-12-18
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回