高级检索

激光功率对2195铝锂合金光纤−半导体激光复合焊接形貌与气孔的影响

赵艳秋, 李响, 刘志强, 颜廷艳, 王磊磊, 占小红

赵艳秋, 李响, 刘志强, 颜廷艳, 王磊磊, 占小红. 激光功率对2195铝锂合金光纤−半导体激光复合焊接形貌与气孔的影响[J]. 焊接学报, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001
引用本文: 赵艳秋, 李响, 刘志强, 颜廷艳, 王磊磊, 占小红. 激光功率对2195铝锂合金光纤−半导体激光复合焊接形貌与气孔的影响[J]. 焊接学报, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001
ZHAO Yanqiu, LI Xiang, LIU Zhiqiang, YAN Tingyan, WANG Leilei, ZHAN Xiaohong. Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001
Citation: ZHAO Yanqiu, LI Xiang, LIU Zhiqiang, YAN Tingyan, WANG Leilei, ZHAN Xiaohong. Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(1): 99-106. DOI: 10.12073/j.hjxb.20220225001

激光功率对2195铝锂合金光纤−半导体激光复合焊接形貌与气孔的影响

基金项目: 中央高校基本科研业务费专项资金资助(NF2022003、NS2022062)
详细信息
    作者简介:

    赵艳秋,博士研究生,主要从事铝合金激光焊接技术方面的研究,发表论文10余篇

    通讯作者:

    占小红,教授. Email: xiaohongzhan_nuaa@126.com.

  • 中图分类号: TG 456.7; TG 146.2+1

Effect of laser power on the morphology and porosity for 2195 Al-Li alloy fabricated by fiber-diode laser hybrid welding

  • 摘要: 光纤−半导体激光复合焊接技术充分结合了光纤与半导体激光热源的优势,在激光加工领域拥有巨大的潜力. 针对2195铝锂合金开展光纤-半导体激光复合焊接试验,并定量研究激光功率对焊接形貌与气孔的影响. 结果表明,光纤激光功率显著影响焊缝熔深,半导体激光功率显著影响焊缝上熔宽. 基于回归分析方法建立焊缝横截面积预测模型. 此外,光纤与半导体激光均对焊缝气孔缺陷的控制起着重要的作用,较高的光纤激光功率有利于降低气孔缺陷. 对于4 mm厚2195铝锂合金,采用光纤激光功率为3.0 kW、半导体激光功率为2.5 ~ 3.0 kW时,熔池温度高且光纤-半导体激光复合作用范围大,焊接接头气孔缺陷少.
    Abstract: Fiber-diode laser hybrid welding technology, which adequately combines the superiorities of both fiber and diode laser heat source, has great potential in the field of laser processing. In this paper, fiber-diode laser hybrid welding experiments were conducted for the 2195 Al-Li alloy. The effect of laser power on morphology and porosity was quantitatively investigated. The results show that fiber laser power has a significantly impact on the weld depth, while diode laser power has a significantly influence on the upper weld width. The regression model for predicting the cross-sectional area of weld seam was obtained. Besides, both fiber and diode laser play an important role in the control of porosity defects. The higher power of fiber laser is beneficial to reduce porosity. For 2195 Al-Li alloy with the thickness of 4mm, the high-temperature molten pool and large range of fiber-diode laser action region are formed at the fiber laser power of 3.0 kW and diode laser power between 2.5 kW and 3.0 kW, which results in the welded joint with the less porosity.
  • 图  1   光纤−半导体激光复合焊接设备

    Figure  1.   Fiber-diode laser hybrid welding equipment. (a) laser composite welding head; (b) RFL-C3000 fiber laser; (c) RFL-A3000D semiconductor laser

    图  2   光纤−半导体激光复合焊接

    Figure  2.   Fiber-diode laser hybrid welding

    图  3   不同光纤激光功率下的焊缝横截面

    Figure  3.   Cross-section of welding seam under different fiber laser power. (a) schematic diagram; (b) Pf = 0 kW, Pd = 3.0 kW: (c) Pf = 0.5 kW, Pd = 3.0 kW; (d) Pf = 1.0 kW, Pd = 3.0 kW; (e) Pf = 1.5 kW, Pd = 3.0 kW; (f) Pf = 2.0 kW, Pd = 3.0 kW; (g) Pf = 2.5 kW, Pd = 3.0 kW; (h) Pf = 3.0 kW, Pd= 3.0 kW

    图  4   光纤激光功率对焊缝形貌的影响

    Figure  4.   Effect of fiber laser power on weld morphology

    图  5   不同激光热源焊接的焊缝表面形貌

    Figure  5.   The surface morphology of weld seam fabricated by different laser source. (a) fiber laser welding; (b) fiber-diode laser composite welding

    图  6   不同半导体激光功率下的焊缝横截面形貌

    Figure  6.   Cross-section of welding seam under different diode laser power. (a) Pf = 3.0 kW, Pd = 0 kW; (b) Pf = 3.0 kW, Pd = 0.5 kW; (c) Pf = 3.0 kW, Pd = 1.0 kW; (d) Pf = 3.0 kW, Pd = 1.5 kW; (e) Pf = 3.0 kW, Pd = 2.0 kW; (f) Pf = 3.0 kW, Pd = 2.5 kW

    图  7   半导体激光功率对焊缝形貌的影响

    Figure  7.   Effect of diode laser power on weld morphology

    图  8   不同能量配比下的焊缝横截面积

    Figure  8.   The cross-section area of weld seam under different energy ratio. (a) test results; (b) regression fitting results

    图  9   不同类型的焊缝横截面宏观形貌

    Figure  9.   Different types of weld morphology in cross-section. (a) φ = 2.5, Pf = 2.5 kW; (b) φ=1.5, Pf = 3.0 kW

    图  10   不同焊缝横截面形貌的形成机理

    Figure  10.   Formation mechanism of different weld morphology in cross-section. (a) fiber laser welding; (b) diode laser welding; (c) V-shaped molten pool; (d) U-shaped molten pool; (e) “goblet” shaped molten pool

    图  11   光纤激光功率对气孔缺陷的影响

    Figure  11.   Effect of fiber laser power on porosity. (a) Pf = 2.0 kW, Pd = 3.0 kW, ρ = 1.47%; (b) Pf = 2.5 kW, Pd = 3.0 kW, ρ = 0.56%; (c) Pf = 3.0 kW, Pd = 3.0 kW, ρ = 0.07%

    图  12   半导体激光功率对气孔缺陷的影响

    Figure  12.   Effect of diode laser power on porosity. (a) Pf = 3.0 kW, Pd = 0 kW, ρ = 1.00%; (b) Pf = 3.0 kW, Pd = 0.5 kW ρ = 1.32%; (c) Pf = 3.0 kW, Pd = 1.0 kW, ρ = 1.19%; (d) Pf = 3.0 kW, Pd = 1.5 kW, ρ = 0.40%; (e) Pf = 3.0 kW, Pd = 2.0 kW, ρ = 0.35%; (f) Pf = 3.0 kW, Pd = 2.5 kW, ρ = 0.09%; (g) Pf = 3.0 kW, Pd = 3.0 kW, ρ = 0.07%

    图  13   能量配比对气孔缺陷的影响

    Figure  13.   Effect of energy ratio on porosity

    表  1   光纤激光与半导体激光的关键参数

    Table  1   Parameters of fiber laser and diode laser

    激光器最大功率
    P/kW
    光纤芯径
    DC /μm
    波长
    λ/nm
    光斑直径
    Ds /μm
    RFL-C30003.0501 08066.67
    RFL-A3000D3.06009151 200
    下载: 导出CSV

    表  2   2195铝锂合金化学成分(质量分数, %)

    Table  2   Chemical composition of 2195 Al-Li alloy

    材料CuLiZrMgAgFeTiSiAl
    21954.021.00.110.40.410.160.070.03余量
    下载: 导出CSV
  • [1] 罗传光, 李桓, 于福盛, 等. 2195-F态铝锂合金TIG焊和FSW焊后残余应力分析[J]. 焊接学报, 2018, 39(11): 43 − 47.

    Luo Chuanguang, Li Huan, Yu Fusheng, et al. Residual stress analysis of 2195-F state aluminum lithium alloy after TIG welding and FSW[J]. Transactions of The China Welding Institution, 2018, 39(11): 43 − 47.

    [2] 熊焕. 低温贮箱及铝锂合金的应用[J]. 导弹与航天运载技术, 2001(6): 33 − 40. doi: 10.3969/j.issn.1004-7182.2001.06.007

    Xiong Huan. Cryogenic tank and application of aluminum lithium alloy[J]. Missiles and Space Vehicles, 2001(6): 33 − 40. doi: 10.3969/j.issn.1004-7182.2001.06.007

    [3] 马云龙, 杨子奇, 李劲风. 2195铝锂合金摩擦搅拌焊接头组织与腐蚀行为[J]. 焊接学报, 2019, 40(10): 142 − 147.

    Ma Yunlong, Yang Ziqi, Li Jinfeng. Structure and corrosion behavior of friction stir weld joint of 2195 Al-Li alloy[J]. Transactions of The China Welding Institution, 2019, 40(10): 142 − 147.

    [4] 张新瑞. 2195铝锂合金激光选区熔化成形及裂纹缺陷调控[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Zhang Xinrui. Selective laser melting of AA2195 Al-Li alloy and crack defect control[D]. Harbin: Harbin Institute of Technology, 2020.

    [5]

    Zhao H, White D. R., DebRoy T Current issues and problems in laser welding of automotive aluminium alloys[J]. International Materials Reviews, 1999, 44(6): 238 − 266. doi: 10.1179/095066099101528298

    [6]

    Dittrich D, Standfuss J, Liebscher J, et al. Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design – first results[J]. Physics Procedia, 2011, 12: 113 − 122. doi: 10.1016/j.phpro.2011.03.015

    [7] 韩晓辉, 马寅, 马国龙, 等. 双光束激光焊匙孔动态特征分析[J]. 焊接学报, 2020, 41(2): 93 − 96.

    Han Xiaohui, Ma Yin, Ma Guolong, et al. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. Transactions of the China Welding Institution, 2020, 41(2): 93 − 96.

    [8] 常云峰, 雷振, 王旭友, 等. 2A14铝合金激光-MIG复合填丝焊特性分析[J]. 焊接学报, 2017, 38(7): 40 − 44.

    Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Process of laser-MIG hybrid welding of 2A14 aluminum alloy with filler wire[J]. Transactions of the China Welding Institution, 2017, 38(7): 40 − 44.

    [9]

    Bagger Claus, Olsen Flemming O. Review of laser hybrid welding[J]. Journal of Laser Applications, 2005, 17(1): 2 − 14. doi: 10.2351/1.1848532

    [10]

    Mahrle A, Beyer E. Hybrid laser beam welding—Classification, characteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3): 169 − 180. doi: 10.2351/1.2227012

    [11]

    Kronthaler M R, Braunreuther S, Zaeh M. F. Bifocal hybrid laser welding -more than a superposition of two processes[J]. Physics Procedia, 2011, 12: 208 − 214. doi: 10.1016/j.phpro.2011.03.027

    [12]

    Witzendorff P. , Hermsdorf J., Kaierle S., et al. Double pulse laser welding of 6082 aluminium alloys[J]. Science and Technology of Welding and Joining, 2015, 20(1): 42 − 47. doi: 10.1179/1362171814Y.0000000255

    [13] 杨璟. 铝合金激光深熔焊接过程行为与缺陷控制研究[D]. 北京: 北京工业大学, 2011.

    Yang Jing. Study on the process behavior and defects control during laser deep penetration welding of aluminium alloy[D]. Beijing: Beijing University of Technology, 2011.

    [14] 杨海锋, 王旭友, 王威, 等. 铝合金双光束激光焊接过程稳定性分析[J]. 焊接学报, 2016, 37(6): 13 − 18.

    Yang Haifeng, Wang Xuyou, Wang Wei, et al. Process stability analysis of double beam laser welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(6): 13 − 18.

    [15] 朱宝华, 李小婷, 丁凯强. 半导体-光纤激光复合焊接铝合金研究[J]. 应用激光, 2018, 38(4): 587 − 590.

    Zhu Baohua, Li Xiaoting, Ding Kaiqiang. Research on hybrid diode-fiber laser welding for qluminum alloy[J]. Applied Laser, 2018, 38(4): 587 − 590.

  • 期刊类型引用(5)

    1. 于瑾佳,王琳. 磷酸盐-柠檬酸盐体系中Q235钢焊接接头磷化处理及耐蚀性. 电镀与精饰. 2023(02): 42-48 . 百度学术
    2. 柯志刚,朱丽慧,周任远,翟国丽. 钼对S30432耐热钢组织和性能的影响. 钢铁. 2020(07): 92-99 . 百度学术
    3. 韩晓辉,杨志斌,张志毅,雷振,史春元. 热输入对不锈钢激光搭接焊接头晶间腐蚀敏感性的影响. 焊接学报. 2019(04): 148-153+167 . 本站查看
    4. 张婧,李海新,殷子强,杨振林,杜永鹏,孔祥峰,袁新,李守彪. 焊接接头的腐蚀研究进展. 腐蚀科学与防护技术. 2018(06): 661-670 . 百度学术
    5. 张婧,李海新,杨振林,孔祥峰,王宁,郝长平. 水下焊接焊缝金属的晶间腐蚀研究. 热加工工艺. 2018(23): 17-20+24 . 百度学术

    其他类型引用(2)

图(13)  /  表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  36
  • PDF下载量:  66
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2022-12-18
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回