高级检索

铝/铜异种金属电阻热辅助超声波缝焊工艺特性

于江, 潘俊林, 苗惺林, 张洪涛, 高建国, 苏昭方

于江, 潘俊林, 苗惺林, 张洪涛, 高建国, 苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性[J]. 焊接学报, 2022, 43(7): 76-81. DOI: 10.12073/j.hjxb.20220124001
引用本文: 于江, 潘俊林, 苗惺林, 张洪涛, 高建国, 苏昭方. 铝/铜异种金属电阻热辅助超声波缝焊工艺特性[J]. 焊接学报, 2022, 43(7): 76-81. DOI: 10.12073/j.hjxb.20220124001
YU Jiang, PAN Junlin, MIAO Xinglin, ZHANG Hongtao, GAO Jianguo, SU Zhaofang. Process characteristics of the resistance heat-assisted ultrasonic seam welding of aluminum alloy and copper dissimilar metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 76-81. DOI: 10.12073/j.hjxb.20220124001
Citation: YU Jiang, PAN Junlin, MIAO Xinglin, ZHANG Hongtao, GAO Jianguo, SU Zhaofang. Process characteristics of the resistance heat-assisted ultrasonic seam welding of aluminum alloy and copper dissimilar metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 76-81. DOI: 10.12073/j.hjxb.20220124001

铝/铜异种金属电阻热辅助超声波缝焊工艺特性

基金项目: 山东省重大科技创新工程(2019JZZY010366);中央引导资金(YDZX20203700003578);山东省自然基金项目(ZR2019PEE010);21年山东省新旧动能转换重大产业攻关项目;威海市产研院专项支持项目(2020001PTXM08).
详细信息
    作者简介:

    于江,博士研究生;主要研究方向为异种金属电阻-超声复合焊接;Email: yujiang@hit.edu.cn

    通讯作者:

    张洪涛,博士,教授;Email: zhanght@hitwh.edu.cn.

  • 中图分类号: TG 453

Process characteristics of the resistance heat-assisted ultrasonic seam welding of aluminum alloy and copper dissimilar metals

  • 摘要: 1060纯铝箔作为中间层,通过电阻热辅助超声波缝焊的方式实现1 mm厚度6061铝合金和T2紫铜异种金属焊接,分析了焊接过程中电阻热对铝/铜焊接接头焊缝成形、界面形貌、温度场以及力学性能的影响. 结果表明,采用单独超声波缝焊焊接铝/铜异种金属时,因产生的焊接能量较小,接头连接界面处仅局部区域位置形成连接,接头拉剪强度为45 MPa. 但在电阻热辅助超声波缝焊过程中,电阻热的加入能够有效预热工件,令待焊材料表面发生软化,在高频振动作用下,接头连接界面处形成有效连接. 同时,引入电阻热提高了铝/铜界面处温度,由单独超声波缝焊的140 ℃增加至190 ℃,界面处原子扩散距离增加,获得焊接接头的拉剪强度增加至75 MPa,相对前者接头拉剪强度提高67%.
    Abstract: The 6061 aluminum alloy and pure copper with the same thickness of 1 mm were successfully welded with 1060 pure aluminum foil as the interlayer by resistance heat-assisted ultrasonic seam welding. The effect of resistance heat on the weld appearance, interface morphology, temperature field, and mechanical properties of the welded joints was investigated. The results showed that only local areas were connected at the interface of the Al/Cu welded joints by single ultrasonic seam welding and the tensile shear strength was only 45 MPa, which was attributed to the generated small welding energy in the welding process. However, the workpiece can be successfully preheated by the front resistance heat, which could soften the surface of the material in the resistance heat-assisted ultrasonic seam welding process. Therefore, an effective connection was formed at the joint interface under the function of the high-frequency vibration. Meanwhile, the interface temperature was significantly improved. The temperature at the Al/Cu interface was increased from 140 ℃ to 190 ℃, which increased the atomic diffusion distance at the Al/Cu interface, and the strength of the welded joint was significantly improved. The tensile shear strength reached 75 MPa, which was 67% higher than that of single ultrasonic seam welding.
  • 随着电子元器件封装密度的增加,陶瓷球栅阵列(CBGA)和陶瓷柱栅阵列(CCGA)因其高密度的面排布引脚形式,在航空航天等高可靠性领域产品中得到了广泛应用[1-2]. CBGA和CCGA封装器件分别通过陶瓷管壳上的焊球和焊柱实现与PCB基板的组装互连,由于氧化铝陶瓷管壳(热膨胀系数为6.5 × 10−6/℃)和PCB基板(热膨胀系数为18 × 10−6 ~ 21 × 10−6/℃)的热膨胀系数差了近3倍,这种差异会在温度变化过程中产生剪切应变而导致裂纹萌生,进而引发焊点失效,因此温度循环成为了封装器件可靠性评估的关键手段. CCGA封装是在CBGA封装的基础上,用柱栅阵列代替了球栅阵列,增加互连引脚的距离,大大缓解了热膨胀系数不匹配带来的焊点失效问题,提高了焊点的可靠性,成为大尺寸产品封装的更优选择[3-5].

    在温度循环过程中,焊点的界面显微组织会发生变化,包括金属间化合物(IMC)的成分及厚度等[6-8],界面的显微组织会影响焊点的可靠性,焊点的抗剪强度是反映其可靠性最直观的方式,因此分析温度循环过程中焊点的显微组织与抗剪强度的演变关系对揭示CCGA封装焊点的失效机理及建立可靠性评估依据具有重要的参考价值.

    文中以CCGA484封装器件为研究对象,分析温度循环过程中焊点的界面显微组织演变与抗剪强度的对应关系,研究温度循环过程中焊点的失效机理,为CCGA封装的发展及应用提供理论指导.

    试验中选用高温共烧氧化铝陶瓷外壳,型号为CLGA484,镀层为Ni/Au,焊盘直径为ϕ0.8 mm ± 0.05 mm,焊盘间距为1.27 mm,板级封装用PCB板上的焊盘直径为ϕ0.8 mm ± 0.05 mm,焊柱采用ϕ0.51 mm × 2.21 mm的Pb90Sn10普通高铅焊柱,植柱和组装到PCB板上采用的锡膏均采用Sn63Pb37.

    试验样品制备过程为:丝网印刷锡膏→植柱→真空回流焊接→清洗→PCB板喷印锡膏→CCGA器件与PCB焊盘喷印锡膏光学对位→真空回流焊接,完成板级封装后的试验样品如图1所示,将组装到PCB板的试样与未组装的CCGA器件同时进行温度循环试验,前者用于观察不同温度循环次数下焊柱的外观形貌,后者用于焊点的金相分析和剪切力测试.

    图  1  CCGA板级封装试样
    Figure  1.  Specimen of CCGA board-level packages

    对CCGA484试验样品进行温度循环试验,试验条件按照美军标MIL-STD-883. 温度循环曲线如图2所示,温度范围为−65 ~ 150 ℃,循环周期为50 min,高低温保温时间均为15 min,升降温速率相同,试验过程中,每隔100次温度循环取出进行形貌观察、剪切力测试和金相分析,共进行500次温度循环.

    图  2  温度循环曲线
    Figure  2.  Parameter of thermal cycling of CCGA solder joints

    选用抗剪强度作为CCGA焊点的可靠性评估依据,试验设备采用专门的微焊点强度测试仪(DAGE4800),剪切速度均为0.4 mm/s,由于CCGA484器件的焊柱间距较小,试验过程中需要铲去周围的焊柱,保证剪切工具在行进时不会接触其它材料.

    由于陶瓷管壳和PCB板的热膨胀系数差别较大,这种热失配会在温度变化过程中产生剪切应变,宏观表现为焊柱发生塑性变形.

    温度循环过程中焊柱形貌如图3所示. 从图中可以看出,温度循环次数达到400次时,焊柱在反复热冲击作用下开始发生明显的塑性变形,且表面变得更加粗糙,焊点位置伴随有轻微的颈缩现象,500次后焊柱的扭曲程度进一步加剧,但肉眼还未观察到焊点开裂现象.

    图  3  不同温度循环次数下CCGA封装器件的宏观形貌
    Figure  3.  Evolution of solder column morphology at different thermal cycling times. (a) 100 times; (b) 300 times; (c) 400 times; (d) 500 times

    由于焊柱在长时间的高温、恒压力作用下,即使应力小于屈服强度也会慢慢发生蠕变变形[9]. 在温度循环的升温及高温保温阶段,陶瓷的热膨胀系数大于PCB基板,焊柱发生倾斜,在温度循环的降温及低温保温阶段,焊柱恢复至初始状态后向相反方向偏移,在反复的升温降温过程中,焊柱蠕变变形逐渐累积,达到宏观可见的扭曲状态,而焊点钎料的强度要略大于焊柱,因此在焊点处会有颈缩现象产生.

    在焊点形成过程中,钎料与焊盘金属在短时间的高温作用下扩散生成硬脆的IMC层,实现焊柱与基板之间的电气和机械连接,但是在长时间的温度循环过程中,扩散作用导致IMC层厚度逐渐增加,其成分也会发生相应的变化,由于IMC的热膨胀系数与钎料相差较大,因此过厚的IMC会对焊点的可靠性产生不利的影响.

    不同温度循环次数下的CCGA焊点界面显微组织如图4所示,在温度循环前,高铅焊柱与Ni焊盘界面观察不到明显的IMC层,因为Ni相对稳定,其界面反应层与铜相比是相当薄的,所以观察不到,随着循环次数增加,界面出现不同颜色对比度的中间层,且厚度逐渐增加,根据Ni-Sn二元相图可知,Sn-Pb钎料与Ni焊盘扩散反应生成的界面IMC从Ni侧依次包括Ni3Sn,Ni3Sn2和Ni3Sn4,具体的化合物成分取决于Sn与Ni的相对浓度.

    图  4  CCGA封装器件焊点显微组织
    Figure  4.  Microstructure of CCGA solder joints at different thermal cycling times. (a) original; (b) 100 times; (c) 200 times; (d) 300 times

    采用EDS分析界面IMC成分,不同温度循环次数下测试IMC成分的位置如图5 ~ 图7所示,对应不同位置的成分如表1所示. 从图中可以看出,100次温度循环时,界面点1主要为偏析的富锡相,点2处Ni与Sn的原子比接近3∶4,结合Ni-Sn二元相图可知,应为Ni3Sn4化合物,与已有的研究一致[8];在200次温度循环后,界面点1处仍为Ni3Sn4相,靠近Ni焊盘侧的点2处Ni与Sn的原子比接近3∶2,推测为Ni3Sn2相;500次温度循环后,在Ni与Ni3Sn2相之间的点2处,Ni与Sn的原子比接近3∶1,应为Ni3Sn相,因此推测随着温度循环次数增加,从焊柱到Ni焊盘之间依次生成的IMC为富锡相→Ni3Sn4→Ni3Sn2→Ni3Sn. 分析IMC形成过程,认为在温度循环前,富锡相与Ni通过元素相互扩散,反应生成极少量Ni3Sn4化合物层,Ni3Sn4化合物层的生成阻挡了Sn与Ni的扩散反应,Ni与Ni3Sn4化合物层中微量的Sn继续发生扩散反应,生成Ni含量更高的Ni3Sn2化合物相,之后,Ni3Sn2化合物层进一步阻挡Ni3Sn4化合物层中Sn与Ni的扩散反应,生成Ni含量更高的Ni3Sn化合物相. 统计不同温度循环次数下界面IMC厚度,如图8所示,两者基本呈指数为1/2的幂函数增长关系,符合扩散控制机制.

    图  5  温度循环100次焊点界面IMC成分
    Figure  5.  IMC component of CCGA solder joints at thermal cycling of 100 times
    图  7  温度循环500次焊点界面IMC成分
    Figure  7.  IMC component of CCGA solder joints at thermal cycling of 500 times
    图  6  温度循环200次焊点界面IMC成分
    Figure  6.  IMC component of CCGA solder joints at thermal cycling of 200 times

    界面IMC层存在离子键或共价键,所以往往具有硬脆特性,与基板和焊柱的线膨胀系数差别较大,随着温度循环次数增加,硬脆的IMC层厚度会逐渐增加,因此焊点界面处会产生较大的应力集中,在反复热应力作用下会萌生不同方向的细微裂纹,如图7所示,推测随着温度循环次数继续增加,应力集中导致微裂纹沿着剪切应变方向逐渐扩展,直到覆盖整个焊点,导致基板与焊柱之间发生断裂失效.

    表  1  不同温度循环次数下焊点界面的成分分析
    Table  1.  Component of CCGA solder joints at different thermal cycling times
    循环次数界面点质量分数w(%)原子分数a(%)
    PbSnNiPbSnNi
    100点113.4376.3910.187.3572.9919.66
    点24.9769.3725.662.355.941.8
    200点1964.8326.174.252.7543.05
    点24.9151.9943.11.9335.6362.44
    500点18.7745.4445.793.5131.7764.72
    点28.2428.1663.62.9217.4479.64
    下载: 导出CSV 
    | 显示表格
    图  8  温度循环次数与界面IMC厚度的关系
    Figure  8.  Variations of IMC thickness of CCGA solder joint with different thermal cycling times

    焊点的力学性能是评估其可靠性的最直观方法之一,采用DAGE4800微焊点强度测试仪测试不同循环次数下焊点的抗剪强度,如图9所示. 随着温度循环次数的增加,CCGA封装焊点的抗剪强度呈现下降趋势,到500次温度循环结束,抗剪强度相对下降了15.6%,且下降的速率逐渐增大. 结合上文界面显微组织分析可知,长时间高温会促进界面元素相互扩散,依次生成Ni3Sn4,Ni3Sn2和Ni3Sn多种IMC化合物层,且IMC层厚度逐渐增加,这些化合物与Sn,Pb的晶格常数和晶格结构存在较大差异,具有较高的熔点,呈现硬脆特性,因此在反复塑性变形过程中会产生应力集中,容易萌生裂纹而导致焊点失效,所以焊点的力学性能随着IMC厚度增加而逐渐下降,与已有的研究结果一致[10]. 对抗剪强度Rτ与温度循环次数n之间的关系做曲线拟合,得到下式,即

    图  9  不同循环次数下焊点剪切力变化
    Figure  9.  Variations of shear strength of CCGA solder joints with different thermal cycling times
    $${R_\tau } = 682.25 - 0.06\;n - 2.77 \times {10^{ - 4}}{n^2}$$ (1)

    根据技术指标要求,焊柱的最小剪切力为5.6 N,由式(1)推算可得,当温度循环次数大于550次时,焊点的抗剪强度将不满足要求.

    (1) 温度循环超过400次时,CCGA器件焊柱开始发生明显的塑性变形.

    (2) CCGA封装器件的焊点随着温度循环次数增加,从Ni焊盘侧依次生成的IMC层成分为Ni3Sn→Ni3Sn2→Ni3Sn4,且IMC层厚度逐渐增加.

    (3) CCGA封装器件焊点的抗剪强度随着温度循环次数增加呈下降趋势,且下降的速率逐渐增大,到500次温度循环结束,抗剪强度相对下降了15.6%,这是由于硬脆的IMC层厚度增加,在变形过程中导致应力集中而引发焊点失效.

  • 图  1   铝/铜电阻-超声波缝焊示意图

    Figure  1.   Schematic diagram of Al/Cu with resistance heat-assisted ultrasonic seam welding

    图  2   测温示意图

    Figure  2.   Schematic diagram of temperature measurement

    图  3   不同焊接方式下接头的宏观形貌

    Figure  3.   Macro morphology of the welded joints with different welding methods. (a) single ultrasonic seam welding; (b) resistance heat-assisted ultrasonic seam welding

    图  4   单独超声波缝焊铝/铜接头界面形貌

    Figure  4.   Interface morphology of Al/Cu welded joints with the single ultrasonic seam welding. (a) interfacial morphology of the joints; (b) enlarged image of the A area

    图  5   单独超声波缝焊下中间层/铜侧界面处线扫描结果

    Figure  5.   EDS line result of interlayer/Cu interface with the single ultrasonic seam welding

    图  6   不同焊接时间下单独超声波缝焊中间层/铜侧界面温度

    Figure  6.   Interface temperature of interlayer/Cu joint interface with single ultrasonic seam welding at different welding time

    图  7   电阻-超声波缝焊下铝/铜接头界面形貌

    Figure  7.   Interface morphology of Al/Cu welded joints with resistance heat-assisted ultrasonic seam welding. (a) interfacial morphology of the joints; (b) enlarged image of the B area

    图  8   电阻-超声波缝焊下中间层/铜侧界面处线扫描结果

    Figure  8.   EDS line result of interlayer/Cu interface with resistance heat-assisted ultrasonic seam welding

    图  9   不同焊接时间下电阻-超声波缝焊中间层/铜侧界面温度

    Figure  9.   Interface temperature of interlayer/Cu joint interface with resistance heat-assisted ultrasonic seam welding at different welding time

    图  10   铝/铜接头的拉剪强度

    Figure  10.   Tensile-shear strength of Al/Cu joint

    图  11   电阻-超声波缝焊接头断口宏观形貌

    Figure  11.   Macro morphology of fracture surface of resistance heat-assisted ultrasonic seam welding

    图  12   电阻-超声波缝焊接头断口二次电子扫描图像

    Figure  12.   SEM image of fracture surface with resistance heat-assisted ultrasonic seam welding

    表  1   焊接工艺参数

    Table  1   Welding parameters

    焊接速度
    v/(mm·s−1)
    焊接压强
    P/MPa
    焊接电流
    I/A
    振动频率
    f/kHz
    50.411020
    下载: 导出CSV
  • [1] 于明润, 赵洪运, 蒋智华, 等. 铝/黄铜异种金属搅拌摩擦焊搭接接头显微组织与力学性能[J]. 机械工程学报, 2019, 55(6): 39 − 45. doi: 10.3901/JME.2019.06.039

    Yu Mingrun, Zhao Hongyun, Jiang Zhihua, et al. Research on microstructure and mechanical properties of friction stir lap welded aluminum/brass dissimilar joint[J]. Journal of Mechanical Engineering, 2019, 55(6): 39 − 45. doi: 10.3901/JME.2019.06.039

    [2] 邓呈敏, 程东海, 张华, 等. 焊丝成分对铝/铜激光熔钎焊接头组织和性能的影响[J]. 焊接学报, 2022, 43(1): 16 − 21.

    Deng Chengmin, Cheng Donghai, Zhang Hua et al. Effect of welding arc on microstructure and properties on Al/Cu laser welding-brazing joints[J]. Transactions of the China Welding Institutions, 2022, 43(1): 16 − 21.

    [3]

    Wang Xijing, Zhang Zhongke, Da Chaobing, et al. Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy[J]. China Welding, 2007, 16(1): 57 − 62.

    [4]

    Wu X, Liu T, Cai W. Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds[J]. Journal of Manufacturing Processes, 2015, 20: 515 − 524. doi: 10.1016/j.jmapro.2015.05.003

    [5]

    He H, Wu C S, Lin S B, et al. Pulsed TIG welding-brazing of aluminum-stainless steel with an Al-Cu twin hot wire[J]. Journal of Materials Engineering and Performance, 2019, 28: 1180 − 1189. doi: 10.1007/s11665-018-3848-y

    [6]

    Xiong J T, Peng Y, Zhang H, et al. Microstructure and mechanical properties of Al-Cu joints diffusion-bonded with Ni or Ag interlayer[J]. Vacuum, 2018, 147: 187 − 193. doi: 10.1016/j.vacuum.2017.10.033

    [7]

    Lei Z L, Zhang X R, Liu J G, et al. Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint[J]. Journal of Manufacturing Processes, 2021, 67: 226 − 240. doi: 10.1016/j.jmapro.2021.04.065

    [8]

    Ni Z L, Zhao H J, Mi P B, et al. Microstructure and mechanical performances of ultrasonic spot welded Al/Cu joints with Al 2219 alloy particle interlayer[J]. Materials and Design, 2016, 92: 779 − 786. doi: 10.1016/j.matdes.2015.12.132

    [9] 邓呈敏, 程东海, 张华, 等. 纵向直流磁场对铝铜熔钎焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003

    Deng Chengmin, Cheng Donghai, Zhang Hua, et al. Effect of microstructure and mechanical properties on Al-Cu welding-brazing joint assisted by longitudinal DC magnetic field[J]. Transactions of the China Welding Institution, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003

    [10]

    Zhang Yu, Li Yang, Luo Zhen, et al. Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding[J]. Materials and Design, 2016, 106: 235 − 246. doi: 10.1016/j.matdes.2016.05.117

    [11] 王财灵, 邢彦锋, 王影, 等. 铝铜超声波焊接接头组织、性能及电阻研究[J]. 兵器材料科学与工程, 2022, 45(1): 12 − 17. doi: 10.14024/j.cnki.1004-244x.20211027.001

    Wang Cailing, Xing Yanfeng, Wang Ying, et al. Microstructure performance and resistance of aluminum-copper ultrasonic welding joint[J]. Ordnance Material Science and Engineering, 2022, 45(1): 12 − 17. doi: 10.14024/j.cnki.1004-244x.20211027.001

    [12]

    Yan S H, Shi Y. Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints[J]. Journal of Manufacturing Processes, 2019, 45: 312 − 321. doi: 10.1016/j.jmapro.2019.07.009

    [13]

    Dai X Y, Zhang H T, Liu J H, et al. Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding[J]. Materials and Design, 2015, 77: 65 − 71. doi: 10.1016/j.matdes.2015.03.054

    [14]

    Dai X Y, Zhang H T, Liu J H, et al. Arc assisted ultrasonic seam welding of Mg/Al joints with Zn interlayer[J]. Materials Science and Technology, 2016, 32(2): 164 − 172.

    [15]

    Li D. A review of microstructure evolution during ultrasonic additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(1): 1 − 19.

    [16]

    Sridharan N, Gussev M, Seibert R, et al. Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing[J]. Acta Materialia, 2016, 117: 228 − 237.

    [17] 于江, 王波, 纪昂, 等. TIG电弧预热辅助铝-铜超声波缝焊工艺研究[J]. 机械工程学报, 2017, 53(19): 149 − 153. doi: 10.3901/JME.2017.19.149

    Yu Jiang, Wang Bo, Ji Ang, et al. Study on TIG arc preheating auxiliary aluminum-copper ultrasonic seam welding[J]. Journal of Mechanical Engineering, 2017, 53(19): 149 − 153. doi: 10.3901/JME.2017.19.149

  • 期刊类型引用(10)

    1. 陈澄,尹红波,王成,倪大海,谢璐,曾超林. 钼铜载体与铝合金外壳的无压纳米银胶低温烧结强度. 半导体技术. 2025(01): 95-100 . 百度学术
    2. 黄玺,张亮,王曦,陈晨,卢晓. 电子封装用纳米级无铅钎料的研究进展. 材料导报. 2024(23): 136-148 . 百度学术
    3. 黄天,甘贵生,刘聪,马鹏,江兆琪,许乾柱,陈仕琦,程大勇,吴懿平. 电子封装低温互连技术研究进展. 中国有色金属学报. 2023(04): 1144-1178 . 百度学术
    4. 官紫妍,吴丰顺,周龙早,李可为,丁立国,李学敏. 功率模块纳米银烧结技术研究进展. 电子工艺技术. 2023(04): 1-6 . 百度学术
    5. 傅必成,方毅,张乐,李道会,齐放,宋利军,祝温泊. Fluxless bonding with silver nanowires aerogel in die-attached interconnection. China Welding. 2023(02): 32-41 . 百度学术
    6. 杜伟,强军锋,余竹焕,高炜,阎亚雯,王晓慧,刘旭亮. 电子封装用纳米复合焊膏的研究进展. 材料导报. 2023(19): 162-172 . 百度学术
    7. 龙旭,种凯楠,苏昱太. 烧结银细观孔隙结构对宏观力学性能的影响. 焊接学报. 2023(12): 15-20+27+137-138 . 本站查看
    8. 齐苗苗,贺晓斌,刘双宝,杨婉春,祝温泊. Ag-Cu固溶体颗粒制备及低温烧结互连接头性能. 焊接学报. 2022(07): 97-101+119 . 本站查看
    9. 杨婉春,胡少伟,祝温泊,李明雨. 低温烧结纳米银膏研究进展. 焊接学报. 2022(11): 137-146+169-170 . 本站查看
    10. 王刘珏,瞿昀昊,吉勇. 颗粒形貌对银焊膏无压烧结行为的影响. 材料导报. 2022(S2): 347-351 . 百度学术

    其他类型引用(10)

图(12)  /  表(1)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  58
  • PDF下载量:  86
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-01-23
  • 网络出版日期:  2022-08-01
  • 刊出日期:  2022-07-24

目录

/

返回文章
返回