高级检索

层间高速摩擦复合WAAM铝合金构件组织与力学性能

Microstructure and mechanical properties of aluminium alloy thin-wall parts in wire arc additive manufacturing hybrid interlayer high-speed friction

  • 摘要: 为提高丝材电弧增材制造(wire arc additive manufacturing,WAAM)构件性能,提出了一种电弧增材制造复合层间高速摩擦(wire arc additive manufacturing hybrid interlayer high speed friction,WAAM-HSF)的方法. 采用直径1.2 mm的4047铝硅焊丝,使用WAAM-HSF方法进行薄壁构件制造,对比研究了WAAM和WAAM-HSF对铝合金薄壁构件的微观结构和力学特性的影响. 结果表明,WAAM和WAAM-HSF构件的微观结构中存在着大量的柱状树枝晶. 与WAAM相比,WAAM-HSF构件的微观结构明显细化. 同时,不同工艺的晶粒分布趋势一致,即晶粒直径在两个薄壁中从顶部到底部逐渐减小. 在相同区域,WAAM构件的晶粒尺寸大于WAAM-HSF构件. 通过破坏外延结晶的生长,达到细化晶粒的目的. 与WAAM相比,WAAM-HSF构件的平均断后伸长率减小了5%;但WAAM-HSF构件的平均显微硬度和平均抗拉强度则分别提高了9.96 HV和17 MPa.

     

    Abstract: A wire arc additive manufacturing hybrid interlayer high speed friction (WAAM-HSF) approach is proposed to improve the performance of wire arc additive manufacturing (WAAM) components. The effect of WAAM and WAAM-HSF on the microstructure and mechanical properties of thin-walled aluminium alloy components was investigated using 1.2 mm diameter 4047 Al-Si wire using the WAAM-HSF method. The results show that the microstructures of the WAAM and WAAM-HSF components contain a large number of columnar dendrites. Compared to WAAM, the microstructure of WAAM-HSF components is significantly finer. At the same time, the grain distribution tends to be the same for the different processes, i.e. the grain diameter decreases from the top to the bottom in both thin walls. Grain refinement is achieved by disrupting the growth of epitaxial crystals. Compared to WAAM, the average elongation at break of WAAM-HSF components is reduced by 5%, but the average microhardness and average tensile strength of WAAM-HSF components are increased by 9.96 HV and 17 MPa, respectively.

     

/

返回文章
返回