Carbon steel bypass-current wire-heating PAW additive manufacturing forming and tissue performance modulation
-
摘要: 为了解决电弧增材制造过程中电弧热输入过大导致成形较差、晶粒粗大等问题,以H08Mn2Si碳钢为增材材料,进行了旁路热丝等离子弧(PAW)增材制造成形及组织优化. 首先在单层单道沉积试验中,研究了主/旁路电流比对熔敷成形和热输入的影响;然后进行多层单道沉积试验,分析了不同层间温度下碳钢的成形、微观组织以及硬度;最后对成形良好的增材样件进行了拉伸性能测试. 结果表明,当主/旁路电流比较小时,可以获得表面均匀光滑的熔覆层、母材稀释率可减小至10%;当控制层间温度为较低的温度100 ℃时,增材成形表面质量较好,试样中间稳定区域处的微观组织晶粒尺寸细小,珠光体占比增加,平均硬度最高可达到294 HV;拉伸试验表明其强度性能以及塑性性能在各方向上均匀一致,断裂形式为韧性断裂.Abstract: In order to solve the problems of poor forming and coarse grain size caused by excessive arc heat input in the wire-arc additive manufacturing process, this paper conducted a study on forming and tissue optimization of bypass-current wire-heating plasma arc welding (PAW) additive manufacturing with H08Mn2Si carbon steel as the additive material. The effect of main/bypass current ratio on the fusion forming and heat input was investigated in a single-layer single-pass deposition test; then a multi-layer single-pass deposition test was conducted to analyze the forming, microstructure and hardness of carbon steel at different interlayer temperatures; finally, the tensile properties of the well-formed additive samples were tested. The results show that when the main/bypass current ratio is small, a uniform and smooth surface can be obtained, and the dilution rate of the base material can be reduced to 10%; when the interlayer temperature is controlled at a lower temperature of 100 °C, the surface quality of the formed additive is good, and the microstructure in the middle stable area of the specimen has a small grain size and an increased percentage of pearlite, and the highest average hardness can reach 294 HV. The tensile test shows that the strength and plastic properties are uniform in all directions, and the fracture form is ductile fracture.
-
-
表 1 母材和焊丝的化学成分(质量分数,%)
Table 1 Chemical composition of base material and wire
材料 C Si S Mn P Cr Ni Cu Fe Q235 0.18 0.21 0.030 0.61 0.002 — — — 余量 H08Mn2Si 0.11 0.65 0.035 1.7 0.035 0.20 0.30 0.20 余量 表 2 旁路热丝等离子弧增材制造工艺参数
Table 2 Processing parameters for BC-PAW process
主路电流
Im/A旁路电流
Ip/A送丝速度
v1 /(m·min−1)行走速度
v2 /(m·min−1)等离子气流量
q1 /(L·min−1)等离子焊枪保护气流
q2 /(L·min−1)喷嘴到工件距离
h/mm钨极内缩量
s/mm107 100 3 0.36 0.5 15 6 2.36 表 3 力学性能计算结果
Table 3 Mechanical property calculation result
位置 抗拉强度
Rm/MPa断面收缩率
Z(%)断后伸长率
A(%)纵向 528.67±14 41.3±2.4 14.6±1.8 横向 522.43±17 38.5±2.1 13.5±2.5 -
[1] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19 − 23. Lu Bingheng. Additive manufacturing--Current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19 − 23.
[2] Leung C L A, Marussi S, Towrie M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing[J]. Acta Materialia, 2019, 166: 294 − 305. doi: 10.1016/j.actamat.2018.12.027
[3] Osipovich K S, Astafurova E G, Chumaevskii A V, et al. Gradient transition zone structure in “steel–copper” sample produced by double wire-feed electron beam additive manufacturing[J]. Journal of Materials Science, 2020, 55(22): 9258 − 9272. doi: 10.1007/s10853-020-04549-y
[4] Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials, 2019, 12(7): 1121. doi: 10.3390/ma12071121
[5] Liu J, Xu Y, Ge Y, et al. Wire and arc additive manufacturing of metal components: a review of recent research developments[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(1-2): 1 − 50.
[6] 耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17 − 21. doi: 10.3969/j.issn.1001-1382.2015.11.003 Geng Haibin, Xiong Jiangtao, Huang Dan, et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding Joining, 2015(11): 17 − 21. doi: 10.3969/j.issn.1001-1382.2015.11.003
[7] Rodrigues T A, Duarte V, Avila J A, et al. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties[J]. Additive Manufacturing, 2019, 27: 440 − 450. doi: 10.1016/j.addma.2019.03.029
[8] 冯曰海, 汤荣华, 刘思余, 等. 308L不锈钢热丝等离子弧增材构件组织和性能[J]. 焊接学报, 2021, 42(5): 77 − 83. Feng Yuehai,Tang Ronghua, Liu Siyu, et al. Microstructures and mechanical properties of stainless steel component deposited with 308L wire by hot wire plasma arc additive manufacturing process[J]. Transactions of the China Welding Institution, 2021, 42(5): 77 − 83.
[9] Zhao Pengkang, Fang Kui, Tang Cheng, et al. Effect of interlayer cooling time on the temperatuer field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.
[10] Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2018, 258: 97 − 105. doi: 10.1016/j.jmatprotec.2018.03.024
[11] Xu X, Gangul S, Ding J, et al. Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing[J]. Materials & Design, 2018, 160: 1042 − 1051.
[12] 柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017. Bo Jiuyang. Microstructue evolution of 2219-Al duiring GTA based additive manufacuturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017.
[13] 苗玉刚, 李春旺, 张鹏, 等. 不锈钢旁路热丝等离子弧增材制造接头特性分析[J]. 焊接学报, 2018, 39(6): 35 − 38. Miao Yugang, Li Chunwang, Zhang Peng, et al. Joint characteristics of stainless steel bypass-current wireheating PAW on additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 35 − 38.
-
期刊类型引用(2)
1. 范召卿,谭德强,崔润,黄彦维,邓凤伦,杨建炜. 基于质量流量控制保护气均匀混配的MAG焊改善研究. 成组技术与生产现代化. 2023(03): 38-43 . 百度学术
2. 张永明,黄松涛,周灿丰. 高气压环境下脉冲MAG焊气体混合比对焊缝成形的影响. 电焊机. 2015(11): 147-150 . 百度学术
其他类型引用(4)