高级检索

AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性

冯道臣, 郑文健, 高国奔, 周州, 贺艳明, 杨建国

冯道臣, 郑文健, 高国奔, 周州, 贺艳明, 杨建国. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006
引用本文: 冯道臣, 郑文健, 高国奔, 周州, 贺艳明, 杨建国. AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性[J]. 焊接学报, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006
FENG Daochen, ZHENG Wenjian, GAO Guoben, ZHOU Zhou, HE Yanming, YANG Jianguo. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006
Citation: FENG Daochen, ZHENG Wenjian, GAO Guoben, ZHOU Zhou, HE Yanming, YANG Jianguo. Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 43-48. DOI: 10.12073/j.hjxb.20220101006

AlCoCrFeNi2.1高熵合金电子束焊接接头耐蚀性

基金项目: 国家自然科学基金资助项目(51975530)
详细信息
    作者简介:

    冯道臣,博士研究生;主要从事化工过程机械及材料腐蚀相关方面的科研; Email: fengdc@zjut.edu.cn

    通讯作者:

    杨建国,博士,教授,博士研究生导师;Email: yangjg@zjut.edu.cn.

  • 中图分类号: TG 456.3

Corrosion resistance of AlCoCrFeNi2.1 high entropy alloy welded joint by electron beam welding

  • 摘要: 为明确高熵合金焊接接头耐腐蚀行为,采用电子束方法对共晶双相AlCoCrFeNi2.1高熵合金进行焊接,并运用电化学腐蚀方法研究了接头耐蚀性.结果表明,焊缝区域(FZ)自腐蚀电位相比母材(BM)提高0.16 V左右,耐蚀性增强,自腐蚀电流减小了一个数量级,腐蚀速率明显降低.焊接接头母材区域腐蚀坑呈纵深扩展趋势,而焊缝区域腐蚀坑呈横向扩展,并表现出明显的相选择性腐蚀现象.焊缝区域的晶粒细化显著,硬度升高,两相分布呈现密集的“网络”状,元素分布更加均匀,大角度晶界增加,这都增强了焊接接头的耐点蚀穿孔的能力.
    Abstract: To clarify the corrosion resistance of high entropy alloy welded joint, the eutectic dual-phase high entropy alloy AlCoCrFeNi2.1 was welded by electron beam welding (EBW), and the corrosion resistance of the joint was studied by electrochemical corrosion method. The results show that the self-corrosion potential of weld zone (FZ) is about 0.16 V higher than the one of base metal (BM), the corrosion resistance is enhanced, and the self-corrosion current is reduced by one order of magnitude, and the corrosion rate is greatly reduced. The corrosion pits in the base metal area of the welded joint are expanding in depth, while the corrosion pits in the weld area are expanding horizontally, showing obvious phase selective corrosion. The grains in the weld area are obviously refined, the hardness is stable and slightly increased, and the two-phase distribution presents a dense "network" trend, which is more uniform than the macro distribution of elements in the base metal. These contributes for enhancing the corrosion resistance and penetration of welded joints.
  • 近年来,复合焊工艺在航空航天、船舶制造、工程机械等领域成为研究与应用的热点[1-4]. 其中,等离子弧−MIG复合焊接是将两电弧共熔池作用于工件,兼具等离子弧能量集中、熔深大[5-6]和MIG电弧效率高、速度快的优点[7],但焊接过程中等离子弧直流正接,MIG电弧直流反接,电弧在电磁力作用下发生排斥,影响焊接过程稳定性和质量.国内外大多采用外加磁场辅助的方式促使电弧有效耦合,但该方法焊接工艺参数较多,结构复杂[8-10].

    为解决这一问题,提出了一种新型的等离子弧−MIG焊丝振荡式复合焊接工艺,即在复合焊接中使MIG焊丝发生位移振荡,可有效促进双弧耦合,增强对熔池的搅拌作用加快气体的排出,使焊缝组织更加均匀.系统介绍了该方法的振荡频率、振荡振幅对电弧形态、熔滴过渡行为的影响以寻求一种优化的等离子弧−MIG复合焊接方法,实现稳定高效焊接.

    试验所用等离子弧−MIG焊丝振荡式复合焊接试验系统如图1所示,系统主要由自主设计的复合焊炬、LHM8-300A型直流脉冲等离子弧焊电源、德国乐驰S8 MIG焊机、安川DX100型焊接机器人组成. 复合焊炬是由自主设计的等离子弧焊枪、MIG焊枪旁轴式构成.

    图  1  等离子弧−MIG焊丝振荡式复合焊接系统
    Figure  1.  PAW-MIG wire oscillation hybrid welding system

    为探究MIG焊丝位移规律性的振荡焊接效果,设计了焊丝振荡系统. 通过可调式偏心转子带动曲柄连杆间接调节MIG焊炬的振荡振幅,设计振荡振幅调节范围为0 ~ 6 mm;利用直流电机的无级变速调节MIG焊丝的水平振荡频率. 电机电源采用KXN-3030D型电源,驱动电机采用DC-12V 775型号直流电机,转速0 ~ 2 500 r/min可调,对应理论振荡频率范围为0 ~ 41 Hz. 冷却循环装置用来避免喷嘴温度过高,利用机器人控制振荡式复合焊枪姿态完成焊接过程.振荡式复合焊接平台可实现MIG焊炬振荡振幅和频率的调节,如图2所示.

    图  2  振荡式复合焊接平台装配实物图
    Figure  2.  Oscillating hybrid welding platform

    平板堆焊试验母材为200 mm × 50 mm × 6 mm的Q235钢板,对接试验所用试板尺寸为200 mm × 80 mm × 6 mm,采用尺寸规格为ϕ1.2 mmER50-6焊丝,母材和焊丝成分如表1所示. 等离子弧喷嘴在前,离子气流量2 L/min,轴线垂直于工件表面,喷嘴距离工件高度为4 mm. 经过对比试验确定等离子弧−MIG堆焊工艺参数如表2中试验组别1 ~ 3所示,对接工艺参数如表2中试验组别4 ~ 7所示. 电机转速0,1 000,1 500,2 000 r/min分别对应振荡频率0,16,25,33 Hz.

    表  1  Q235钢和ER50-6焊丝的化学成分(质量分数,%)
    Table  1.  Chemical compositions of Q235 steel and ER50-6 welding wire
    材料CMnSiPSNiFe
    Q235≤0.180.35 ~ 0.80≤0.30≤0.040余量
    ER50-60.06 ~ 0.151.40 ~ 1.850.80 ~ 1.150.0250.0250.15余量
    下载: 导出CSV 
    | 显示表格
    表  2  焊接工艺参数
    Table  2.  Welding process parameters
    组别等离子弧电流IP /AMIG电流IM /A焊接速度v/(mm·s−1)电机转速n/(r·min−1)振荡振幅A/mm
    140120400
    24012041 000,1 500,2 000,25003
    34012041 0001,2,3,4,5,6
    4100100403
    510010041 000,1 500,2 0003
    610010041 0004
    710010041 5003
    下载: 导出CSV 
    | 显示表格

    根据标准GB/T 2651—2008《焊接接头拉伸试验方法》采用WAW-600型微机控制电液伺服万能试验机进行力学性能试验,设定拉伸速度为3 mm/min. 采用线切割切取拉伸试样,去除焊缝表面余高,每组参数选定3个试样进行拉伸试验,取3个拉伸试样检测结果的平均值作为最终测试结果. 根据标准GB/T 2653—2008《焊接接头弯曲试验方法》采用的弯曲压头直径为20 mm的弯曲半圆弧压头和三点式弯曲方法进行弯曲试验.从每组焊接试样中切取制作3个弯曲试样.

    图3为在无振荡条件下,当电机转速为1 000 r/min(振荡频率16 Hz)、振荡振幅为3 mm时,等离子弧−MIG复合焊接所得焊缝成形情况. 从图3可知,焊缝宏观成形均未有明显缺陷.

    图  3  复合焊焊缝形貌
    Figure  3.  Weld morphology of hybrid welding

    固定MIG焊炬振荡振幅为3 mm,采集电机转速0,1 000,1 500,2 000,2 500 r/min下,对应振荡频率理论值为0,16,25,33,41 Hz的复合焊接电弧形态如图4所示. 当电机转速为0 r/min即无振荡时,等离子弧在前,MIG电弧在后,两电弧耦合效果较差,如图4a所示. 这是由于等离子弧采用直流正接,而MIG电弧采用直流反接,由于电磁力影响两电弧势必会产生排斥现象,不利于共熔池焊接过程. 随着MIG电弧进行水平位移振荡后,两电弧耦合程度发生了变化. 伴随着电机转速(振荡频率)的增加,等离子弧与MIG电弧排斥效果减弱,耦合趋势增大,尤其是电机转速为2 000 r/min(振荡频率为33 Hz)时,焊接过程更稳定;MIG焊丝熔滴过渡过程中产生的爆破效果比无振荡时更加明显,并且指向等离子弧方向;随着MIG焊丝振荡运动,其电弧形状不断变化,有时呈爆破状,有时呈钟形,因此MIG电弧的熔滴过渡形式可能为短路过渡和射流过渡并存.焊接过程中,等离子弧受到电磁压缩能量集中[11]且由于惯性作用会偏向MIG电弧一侧,有利于电弧发生耦合. 随着振荡频率的增大,MIG电弧与等离子弧形态之间相互影响变小,耦合区域变大,MIG焊丝振荡也会增强对熔池的搅拌作用. 当电机转速2 500 r/min(振荡频率为41 Hz)时,发现等离子弧出现不稳定的波动,如图4e所示. 这是由于电机转速(振荡频率)增大,使整个复合焊接装置尤其是等离子弧焊炬产生晃动,影响了焊接效果.

    图  4  不同转速(振荡频率)下复合焊接电弧形态
    Figure  4.  Arc morphology of hybrid welding at different rotational speed (oscillation frequency). (a) rotational speed 0 r/min (0 Hz); (b) rotational speed 1 000 r/min (16 Hz); (c) rotational speed 1 500 r/min (25 Hz); (d) rotational speed 2 000 r/min (33 Hz); (e) rotational speed 2 500 r/min (41 Hz)

    图5为不同转速下复合焊接熔滴过渡及电信号采集. 从图5可以看出,焊接过程中MIG焊丝振荡频率不同,但熔滴过渡方式均表现为短路过渡形式. 从图5a看出,MIG电源形式为直流脉冲且每3个脉冲完成一次短路过渡;而当电机转速为1 500 r/min(振荡频率25 Hz)时,图5c中4 ~ 9完成当前一次熔滴过渡用时减少为约0.007 5 s,同时在两次熔滴过渡之间,存在多次电弧点燃且熔滴短路过程总是表现出高电压低电流特点.

    图  5  不同转速下复合焊接熔滴过渡及电信号采集
    Figure  5.  Droplet transfer and electrical signal of hybrid welding at different rotational speed. (a) rotational speed 0 r/min (0 Hz); (b) rotational speed 1 000 r/min (16 Hz); (c) rotational speed 1500 r/min (25 Hz); (d) rotational speed 2 000 r/min (33 Hz)

    表2中第3组工艺参数下,保持电机转速为1 000 r/min(振荡频率16 Hz),调节MIG焊炬振荡振幅分别为1,2,3,4,5和6 mm情况下观察复合焊接电弧形态和熔滴过渡行为,如图6所示. 当振荡振幅为1 mm时,MIG电弧形状较为规则,相对于较大的振荡振幅,电弧形态较为稳定,如图6a所示. 在较大振荡振幅复合焊接中,作往复运动的MIG电弧对熔池具有更强的搅拌能力,显然更能促进气体的排出;而振荡振幅达到6 mm时,等离子电弧与MIG电弧耦合作用减弱,这主要是由于过大的振动使整个装置不稳定造成的.

    图  6  不同振荡振幅下复合焊接电弧形态
    Figure  6.  Hybrid welding arc morphology with different oscillation amplitude. (a) oscillation amplitude 1 mm ; (b) oscillation amplitude 2 mm; (c) oscillation amplitude 3 mm; (d) oscillation amplitude 4 mm; (e) oscillation amplitude 5 mm ; (f) oscillation amplitude 6 mm

    通过对不同转速和振荡振幅下振荡焊接熔滴过渡和电信号分析发现,MIG熔滴过渡频率受振荡影响显著. 由熔滴过渡图像可以看出,在无振荡复合焊接下熔滴过渡呈现多脉一滴的短路过渡行为;而在振荡加入后,熔滴过渡行为发生了变化如图7所示.

    图  7  不同转速和振荡振幅复合焊接熔滴过渡及电信号采集
    Figure  7.  Droplet transfer and electrical signal of hybrid welding at different rotational speed and oscillation amplitude. (a) rotational speed 1 000 r/min (16 Hz), oscillation amplitude 1 mm; (b) rotational speed 1 500 r/min (25 Hz), oscillation amplitude 3 mm

    相比于无振荡时的多脉一滴,加入振荡后存在一个脉冲周期内出现两次短路过渡的情况.每次短路过渡,焊丝尖部均为小熔滴过渡[12],与熔池短暂接触后快速分离,爆破力很小,因此振荡式复合焊接减小了焊接飞溅,整个过渡过程更为平稳,焊接热输入更稳定.

    图8为不同转速(振荡频率)下对接焊缝成形.每组焊缝均未出现明显焊接缺陷,实现了单面焊双面成形.但是在背部也存在热输入不稳定问题.

    图  8  不同转速(振荡频率)的焊缝成形
    Figure  8.  Weld formation at different rotational speed (oscillation frequency). (a) rotational speed 0 r/min (0 Hz); (b) rotational speed 1 000 r/min (16 Hz); (c) rotational speed 1 500 r/min (25 Hz); (d) rotational speed 2 000 r/min (33 Hz)

    表3为拉伸试验和弯曲试验的测试结果.振荡加入后,焊接接头的抗拉强度均大于无振荡时接头的抗拉强度,并且随着转速(振荡频率)的提高呈现先增大再减小的趋势,抗拉强度最大值为278 MPa. 这是由于一定频率的焊丝振荡起到了搅拌熔池的作用,有利于熔池中气孔的消除.弯曲试验结果表明,在无振荡情况下,弯曲90º时出现了裂纹;振荡加入后转速为1000,2 000 r/min时均未发现裂纹.从表3可知,随振荡频率的提高,抗弯强度呈先增大后减小趋势,最大为272 MPa;焊丝水平位移振荡后,两电弧排斥减弱,提高了焊接接头的力学性能;但振荡过大会使焊接过程的稳定性受影响,造成了抗拉强度和抗弯强度先增大后减小的现象.

    表  3  拉伸和弯曲试验的测试结果
    Table  3.  Results of tensile and bending tests
    电机转速n/( r·min−1)抗拉强度Rm /MPa 抗弯强度Rτ /MPa
    实测值平均值实测值平均值
    0167,178,155167 200,175,179185
    1 000220,240,285248280,235,300272
    1 500325,275,235278260,220,265248
    2 000260,225,174220305,200,205237
    下载: 导出CSV 
    | 显示表格

    (1) 基于等离子弧和MIG弧焊工艺设计了一种新型焊丝振荡式复合焊接系统,实现了MIG焊炬振荡频率为0,16,25,33,41 Hz及振荡振幅0 ~ 6 mm可调的稳定复合焊接过程.

    (2) 研究了振荡式复合焊接焊丝振荡频率和振荡振幅对电弧形态及熔滴过渡行为的影响. 结果表明,振荡系统有效促进了等离子弧和MIG电弧的耦合,尤其是振荡频率为33 Hz时,两电弧之间的排斥减弱,共熔池耦合作用明显;随着MIG焊丝振荡频率和振荡振幅的增大,MIG电弧对熔池的搅拌能力增强,可以有效促进熔池中的气体排出;振动中的MIG焊炬能实现小熔滴短路过渡,减少飞溅,增加熔滴过渡频率.其中当电机转速为1 500 r/min(振荡频率25 Hz)时,完成当前一次熔滴过渡用时减少为约0.007 5 s,使焊接过程更稳定.

    (3)从拉伸和弯曲试验结果发现,振荡式复合焊接相比于不振荡情况下接头的抗拉强度和抗弯强度均有较大提高;随振荡频率的增大,接头的抗拉强度和抗弯强度呈现先增大后减小的趋势.

  • 图  1   焊接接头不同区域SEM图像

    Figure  1.   SEM images of different areas of welded joint. (a) SEM image of base material; (b) SEM image around the fusion zone; (c) SEM image of weld seam center

    图  2   熔合区附近元素分布

    Figure  2.   Elements distribution around fusion zone

    图  3   焊接接头处金相组织

    Figure  3.   Metallographic structure of welded joint

    图  4   焊接接头硬度变化趋势

    Figure  4.   Trend of hardness change of welded joint

    图  5   不同区域试样动电位极化曲线

    Figure  5.   Potentiodynamic-polarization curves of specimens in different areas. (a) base material; (b) welded area; (c) comparison of polarization curves of two kinds of samples

    图  6   母材腐蚀后形貌图

    Figure  6.   Morphology of parent base after corrosion. (a) surface collapse morphology; (b) microscopic morphology in corrosion pit

    图  7   焊接接头横截面腐蚀形貌

    Figure  7.   Corrosion morphology of welded joint cross section

    图  8   焊接接头晶界角度测试结果

    Figure  8.   Test results of weld grain boundary angle. (a) base material; (b) welded area

    表  1   母材化学成分(质量分数,%)

    Table  1   Mass fraction of chemical composition of parent metal

    AlCoCrFeNi其它
    8.0118.2815.8718.3039.530.01
    下载: 导出CSV
  • [1]

    Li Junchen, Meng Xiangchen, Wan Long. Welding of high entropy alloys: Progresses, challenges and perspectives[J]. Journal of Manufacturing Processes, 2021, 68: 293 − 331. doi: 10.1016/j.jmapro.2021.05.042

    [2] 董勇. Al-Cr-Fe-Ni-M系多相高熵合金微观组织与力学性能的基础研究[D]. 大连: 大连理工大学, 2016.

    Dong Yong. Fundamental study on microstructure and mechanical properties in multi-phase Al-Cr-Fe-Ni-M high entropy alloys[D]. Dalian: Dalian University of Technology, 2016.

    [3]

    Li Peng, Wang Shuai, Xia Yueqing, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. Journal of Materials Science & Technology, 2020, 45(10): 59 − 69.

    [4] 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1): 31 − 39. doi: 10.3969/j.issn.1674-6457.2018.01.004

    Chen Guoqing, Shu Xi, Liu Junpeng, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 31 − 39. doi: 10.3969/j.issn.1674-6457.2018.01.004

    [5] 陈国庆, 滕新颜, 树 西, 等. W6钢电子束焊后表面重熔硬化[J]. 焊接学报, 2021, 42(12): 1 − 6. doi: 10.12073/j.hjxb.20210413002

    Chen Guoqing, Ten Xinyan, Shu Xi, et al. Hardening effect of electron beam surface remelting on W6 steel[J]. Transactions of the China Welding Institution, 2021, 42(12): 1 − 6. doi: 10.12073/j.hjxb.20210413002

    [6]

    Yih-Farn Kao, Tsung-Dar Lee, Swe-Kai Chen, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science, 2010, 52: 1026 − 1034. doi: 10.1016/j.corsci.2009.11.028

    [7]

    Chai Wenke, Lu Tao, Pan Ye. Corrosion behaviors of FeCoNiCrx (x=0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116: 106654. doi: 10.1016/j.intermet.2019.106654

    [8]

    Qiu Xingwu, Liu Chunge. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100

    [9]

    Zhang Xiaorong, Guo Jing, Zhang Xiaohui, et al. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution[J]. Journal of Alloys and Compounds, 2019, 775: 565 − 570. doi: 10.1016/j.jallcom.2018.10.081

    [10]

    Shi Yunzhu, Liam Collins, Feng Rui, et al. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance[J]. Corrosion Science, 2018, 133: 120 − 131. doi: 10.1016/j.corsci.2018.01.030

    [11]

    Fu Yu, Li Jun, Luo Hong, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 80: 217 − 233.

    [12]

    Sokkalingam R, Sivaprasad K, Duraiselvam M, et al. Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior[J]. Journal of Alloys and Compounds, 2020, 817: 153163.

    [13]

    Shi Peijian, Li Runguang, Li Yi, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373: 912 − 918. doi: 10.1126/science.abf6986

    [14]

    Rahul M R, Sumanta Samal, Venugopal S, et al. Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 749: 1115 − 1127. doi: 10.1016/j.jallcom.2018.03.262

    [15]

    Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science & Engineering A, 2016, 675: 99 − 109.

    [16]

    Gao Xuzhou, Lu Yiping, Zhang Bo, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59 − 66. doi: 10.1016/j.actamat.2017.07.041

    [17]

    Wu Zhenggang, David S A, Feng Zhili, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scripta Materialia, 2016, 124: 81 − 85. doi: 10.1016/j.scriptamat.2016.06.046

    [18]

    Shi Yunzhu, Mo Jingke, Zhang Fengyuan, et al. In-situ visualization of corrosion behavior of AlxCoCrFeNi highentropy alloys during electrochemical polarization[J]. Journal of Alloys and Compounds, 2020, 844: 156014. doi: 10.1016/j.jallcom.2020.156014

    [19]

    Wani I S, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Materials Research Letters, 2016, 4: 174 − 179.

    [20] 郑文健, 贺艳明, 杨建国, 等. 焊接熔池凝固过程联生结晶晶体学取向对线性不稳定动力学的影响[J]. 机械工程学报, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062

    Zheng Wenjian, He Yanming, Yang Jianguo, et al. Influence of the crystal orientation of epitaxial solidification on the linear instability dynamic during the solidification of welding pool[J]. Journal of Mechanical Engineering, 2018, 54(2): 62 − 69. doi: 10.3901/JME.2018.02.062

    [21] 石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究[D]. 北京: 北京科技大学, 2018.

    Shi Yunzhu. Microstructures and corrosion-resistance properties of the AlxCoCrFeNi high-entropy alloys[D]. Beijing: University of Science and Technology Beijing, 2018.

    [22] 陈倩倩, 李东, 贺聪聪, 等. 大厚度电子束焊接接头厚度方向的组织差异性[J]. 焊接学报, 2015, 36(9): 79 − 82.

    Chen Qianqian, Li Dong, He Congcong, et al. Microstructure difference analysis of large thickness welded joint with EBW[J]. Transactions of the China Welding Institution, 2015, 36(9): 79 − 82.

    [23]

    Han Zhenhua, Ren Weining, Yang Jun, et al. The corrosion behavior of ultra-fine grained CoNiFeCrMn highentropy alloys[J]. Journal of Alloys and Compounds, 2020, 816: 152583. doi: 10.1016/j.jallcom.2019.152583

    [24]

    Xu Xiang, Lu Haifei, Su Youyu, et al. Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition[J]. Corrosion Science, 2022, 195: 109976. doi: 10.1016/j.corsci.2021.109976

  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  25
  • PDF下载量:  51
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-12-31
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-05-12

目录

/

返回文章
返回