高级检索

基于不同算法的金属管棒爆炸焊接模拟

Numerical simulation of explosive welding of metal tube and rod based on different algorithms

  • 摘要: 选取1060铝管/T2铜棒为爆炸复合棒制备材料,T2铜管/Q235钢管为爆炸复合管制备材料,利用ANSYS/LS-DYNA软件结合拉格朗日法、拉格朗日—欧拉耦合法(ALE法)及光滑粒子流体动力学—有限元耦合法(SPH-FEM耦合法)3种算法,对一次制备两组爆炸复合管棒的爆炸焊接试验进行数值模拟. 结果表明,拉格朗日法的前期建模最为简洁,ALE法其次;模拟过程中SPH-FEM耦合法耗时最多,ALE法耗时最短;3种算法所测得的碰撞速度与理论计算值存在0.9% ~ 5.3%的误差,其中SPH-EFM耦合法的误差最小,拉格朗日法的误差最大. 利用管材内部的能量累积原理解释了焊接过程中外部复合管出现的扩径情况,并结合T2铜管/Q235钢管复合界面的压力分布验证了所产生的现象.

     

    Abstract: The 1060 aluminum tube/T2 copper rod are selected as the explosive composite rod preparation materials, and the T2 copper tube/Q235 steel tube are selected as the explosive composite pipe preparation materials. Using ANSYS/LS-DYNA software and combining the three algorithms of Lagrangian algorithm, ALE algorithm and SPH-FEM coupling algorithm, the numerical simulation of the explosive welding experiment of preparing two groups of explosive composite pipe and rod at one time is carried out. The simulation results show that the early modeling of Lagrange algorithm is the most concise, followed by the ALE algorithm. In the simulation process, SPH-FEM coupling algorithm takes the most time, and ALE algorithm takes the shortest time. The error between the collision velocity measured by the three algorithms and the theoretical calculation value is 0.9% − 5.3%. The error of SPH-EFM coupling algorithm is the smallest, and the error of Lagrange algorithm is the largest. The principle of energy accumulation inside the tubes is used to explain the diameter expansion of the external composite pipe during the welding process, and the pressure distribution at the composite interface of T2 copper tube/Q235 steel tube is used to verify this phenomenon.

     

/

返回文章
返回