Microstructure and mechanical properties of CuCrZr/Inconel 625 joints by electron beam welding
-
摘要: 对CuCrZr/Inconel 625管件进行不填丝电子束对接焊试验,观察分析各组试样的接头形貌、微观组织、化学成分以及力学性能分析. 结果表明,当偏束距离为0.6和0.8 mm时,CuCrZr/Inconel 625接头焊缝成形良好,均呈现出上、下宽,中间窄的哑铃型;随着偏束距离的增大,焊缝中的Cu含量增加;CuCrZr/Inconel625管件接头焊缝中的相主要是圆球形的Ni基固溶体以及作为基体的Cu固溶体,使得焊缝具有较好的综合力学性能. 当偏束距离0.8 mm时,试样最大抗拉强度达到304 MPa,断裂于CuCrZr侧热影响区.Abstract: The electron beam butt welding experiments of CuCrZr and Inconel 625 tubes were carried out. The joint morphology, microstructure, chemical composition and mechanical properties of each sample were observed and analyzed. The test results show that the CuCrZr/Inconel 625 joint is in good shape when the beam offset distance is 0.6 and 0.8 mm, it presents a dumbbell shape with wide sides and narrow middle. With the increase of the beam offset distance of the CuCrZr side, the Cu content in the weld increases. The phase of CuCrZr/Inconel 625 tube joint is mainly spherical Ni-based solid solution and Cu solid solution as the matrix, which makes the weld have better comprehensive mechanical properties. When the beam offset distance is 0.8 mm, the maximum tensile strength of the sample reaches 304 MPa and breaks in the heat affected zone of CuCrZr side.
-
Keywords:
- Inconel 625 /
- CuCrZr /
- thin wall tube /
- electron beam welding /
- interface microstructure /
- mechanical properties
-
0. 序言
高能同步辐射光源(high energy photon source, HEPS)是国家重大科技基础设施建设“十三五”规划确定建设的10个重大科技基础设施之一, 是基础科学和工程科学等领域原创性、突破性创新研究的重要支撑平台.真空系统是高能同步辐射光源的基础工程,束流只有在真空环境中运行,才能保持足够的寿命,并且不断地被积累和加速,达到设计的能量和流强,并提供高亮度的同步辐射光.
HEPS采用CuCrZr材料为储存环真空盒的主要材料,Inconel 625作为快校正磁铁内部薄壁真空盒材料,空间紧张区域两种材料合金管需要对接焊[1-2],为保证焊接后真空盒的性能,CuCrZr与Inconel 625材料的焊接性能的研究极为重要.
国内外相关研究学者针对不同的工作要求采用不同的焊接方式对CuCrZr与Inconel 625等同种材料或者相关材料的焊接接头进行焊接性能研究,对焊缝进行了微观组织以及力学性能的研究[3-10],结果表明,CuCrZr与Inconel 625具有较好的焊接性,但是针对具体的焊接工艺以及不同的焊接方式下焊接工艺参数对焊缝性能的影响研究较少. 电子束焊接作为高能束焊接的一种,束流的功率密度高,焊缝深宽比大,工件产生的变形小[11-21],非常适合Inconel 625这类高熔点金属管件的焊接.
为研究异种材料电子束焊接工艺参数对接头微观组织和力学性能的影响,对CuCrZr与Inconel 625管件进行了电子束对接焊试验,采用光学显微镜、扫描电子显微镜和电子万能试验机对各组试样的接头形貌、微观组织及力学性能进行观察和分析,从而为HEPS加速器储存环真空盒异种材质合金管的焊接提供工艺指导以及理论依据.
1. 试验方法
项目主要研究异种材质管件的对接焊工艺,所采用的试验材料主要为外径24 mm、内径22 mm的CuCrZr和Inconel 625圆形合金管件,其化学成分如表1和表2所示.
表 1 Inconel 625化学成分(质量分数,%)Table 1. Chemical compositions of Inconel 625C Si Mn Al Ti Ni Cr Fe Co Nb 0.01 0.50 0.50 0.40 0.40 58 ~ 68 20 ~ 30 5.0 1.0 3.1 ~ 4.1 表 2 CuCrZr化学成分(质量分数,%)Table 2. Chemical compositions of CuCrZrAl Mg Zr Cr Fe Si P 杂质 Cu 0.1 ~ 0.25 0.1 ~ .0.25 0.65 0.65 0.05 0.05 0.01 0.2 余量 CuCrZr/Inconel 625异种材质管件电子束对接焊前,需要对异种材料管件端口进行处理,首先采用砂纸将管件焊接面的内壁与外壁打磨去除氧化膜.采用丙酮擦拭整个对接口去除油脂.
将准备好的CuCrZr管件与Inconel 625管件分别装夹到夹具上,装夹时保证对焊管件的同心度. 当真空度达到0.017 Pa时,进行电子束对接焊试验,试验所采用的焊接工艺参数列于表3中. 由于管件壁厚较薄,因此采用电子束聚焦于管件表面的方式.由于Inconel 625与CuCrZr之间物理性能差异较大,CuCrZr有较强的导热性,因此在焊接时改变电子束焦点的作用位置,采用偏束焊接,使电子束聚焦于CuCrZr管侧,偏束距离分别为0.6,0.8 mm. 将焊好的管件切割成尺寸为8 mm × 5 mm的金相试样,随后对镶嵌后的试样采用80号 ~ 5000号砂纸逐级打磨,然后用金刚石抛光剂进行机械抛光.抛光直至试样成为无划痕、无污染、光滑的镜面后,将CuCrZr/Inconel 625焊接试样放置于3 g FeCl3 + 2 mLHCl + 96 mL乙醇的腐蚀剂中对观察面进行化学浸蚀,腐蚀时间约5 s. 使用奥林巴斯GX71型光学金相显微镜下观察不同偏束距离下试样焊缝的横截面形貌,使用Quanta 200FEG型场发射扫描电镜(scanning electron microscope, SEM对试样焊缝微观形貌观察,对接头界面物相进行鉴定分析. 采用岛津AGXplus250kN型电子万能试验机对焊接接头的抗拉强度进行测试.
表 3 焊接工艺参数Table 3. Welding process parameters编号 加速电压
U/kV束流
I/mA焊接速度
v/(mm·min−1)偏束距离
l/mm1 70 11 600 0.6 2 70 11 600 0.8 2. 试验结果与分析
2.1 异种材料电子束对接焊宏观形貌
图1为CuCrZr/Inconel 625异种管件对接接头表面成形. 当偏束距离为0.6 mm时,焊缝表面光滑,但是在接头处的CuCrZr管侧出现了轻微的咬边缺陷,如图1a所示. 当偏束距离增加至0.8 mm时,咬边焊接缺陷消失,焊缝的熔宽出现一定程度的增加,焊缝表面有致密的鱼鳞纹,有一定的余高,表面成形良好,如图1b所示.
图2为沿中心线切开的CuCrZr/Inconel 625异种材料管件焊缝背面成形. 由于较高的焊接热输入,焊缝内壁出现了由于Inconel 625管件蒸气冷却所导致的黑色镀层区域. 当偏束距离为0.6或者0.8 mm时,焊缝背面成形均良好,未出现上凹缺陷,且在电子束收弧处未出现缺陷.
图3为采用砂纸打磨后CuCrZr/Inconel 625异种材料管件焊缝表面成形. 砂纸打磨可以将金属蒸气产生的黑色镀层完全清除.
图4为不同偏束距离下CuCrZr/Inconel 625异种材质管件的焊缝横截面形貌. 从图4a可以看出,焊缝呈现出上、下宽,中间窄的哑铃型. 当偏束距离增加至0.8 mm时,焊缝的横截面外形未发生明显改变,但是从颜色上可以看出,随着偏束距离的增加,CuCrZr母材的熔化量增加,这使焊缝中的铜含量有所增加.
2.2 电子束对接焊焊缝微观组织
图5为偏束距离为0.6 mm时CuCrZr/Inconel 625焊缝的微观组织形貌. 从图5a与图5b可以看到,焊缝靠近Inconel 625管侧以及焊缝中部有圆球状、针状和树枝状的Ni基固溶体,Cu固溶体则分布在Ni基固溶体的四周. 如图5c所示,随着距Inconel 625管的距离增加,焊缝内部镍含量逐渐降低,但是焊缝内部依旧为球状的Ni基固溶体占据主要位置. 在熔合线右侧距离较近处由一层柱状晶粒构成,随着距焊缝的距离增加,柱状晶变为等轴晶,且晶粒尺寸逐渐减小.
图6为偏束距离0.8 mm时 CuCrZr/Inconel 625焊缝不同位置处的微观组织形貌. 随着偏束距离的增加,CuCrZr管的熔化量明显提高,Cu固溶体成为了整个焊缝中的主要组成部分,而Ni基固溶体则以大小不均匀的球状分布在焊缝中的Cu基体中. 焊缝中Cu基体的晶粒以两侧柱状晶粒和中心粗大的等轴晶粒构成.
2.3 电子束对接焊焊缝元素分布分析
图7为CuCrZr/Inconel 625界面处的扫描电镜显微照片. 图8为沿图7a处的线扫描结果,表4为图7b中各点的能谱分析结果. 在远离CuCrZr/Inconel 625界面处的焊缝中,如表4中B点以及C点结果所示,镍含量维持在10%左右,当扫描路径遇到球状的Ni基固溶体时,如表4中A点结果所示,镍含量会出现明显的上升,且Ni含量的变化与Cr元素变化基本一致.
根据二元相图[22-23]以及表4的能谱结果可以推断出,焊缝内部未生成金属间化合物. 焊缝中的相主要是圆球形的Ni基固溶体和作为基体的Cu固溶体,使得焊缝具有较好的综合力学性能.
表 4 CuCrZr/Inconel 625能谱分析结果(原子分数,%)Table 4. Energy spectrum analysis of CuCrZr/Inconel 625位置 Zr Nb Mn Cr Ni Cu 可能相 A 1.36 6.88 2.97 24.03 62.80 1.96 Ni基固溶体 B 1.11 4.73 0.19 8.37 6.15 79.44 Cu基固溶体 C 1.05 4.65 0.13 4.21 8.93 81.03 Cu基固溶体 2.4 电子束对接焊接头的力学性能
为确定接头的抗拉强度,试验对象选取偏束距离为0.8 mm的CuCrZr/Inconel 625电子束对接焊接头,在0.5 mm/min拉伸速率下测试试样的抗拉强度. 如图9所示,随着拉伸位移的增大,CuCrZr/Inconel 625接头存在弹性变形阶段,继续拉伸,在拉伸过程中存在明显的塑性变形阶段,直至最后断裂,抗拉强度随着位移的增大试样最大抗拉强度为304 MPa.
通过对CuCrZr与Inconel 625关键焊缝试样进行拉伸测试,从拉伸试样断裂后形态可以看到,所有拉伸试样均断裂于CuCrZr管热影响区处.这是由于在CuCrZr侧的热影响区中晶粒发生再结晶,产生异常生长,晶粒的粗大使得材料的强度降低. 另外,CuCrZr与Inconel 625之间的热导率和线性膨胀系数也有很大差异,因此在冷却过程中产生巨大的内部应力. 这些不利影响最终导致接头在拉伸过程中断裂.
图10为试样的断口形貌. 从图10可以看到,断口表面明显的韧窝,可以证明该断裂属于韧性断裂. 该过程是在铜的晶界附近形成微孔,并且在外力作用下微孔连续生长,最终发生断裂.
3. 结论
(1) 当偏束距离为0.6和0.8 mm时,CuCrZr/Inconel 625管件接头的焊缝成形良好,呈现出上、下宽,中间窄的哑铃型,随着偏束距离的增加,焊缝中的铜含量增加.
(2) CuCrZr/Inconel 625管件接头焊缝中的相主要是圆球形的Ni基固溶体以及作为基体的Cu固溶体,使得焊缝具有较好的综合力学性能.
(3) 偏束距离为0.8 mm时CuCrZr/Inconel 625焊接试验件的最大抗拉强度达到304 MPa,断裂于CuCrZr侧热影响区.
-
表 1 Inconel 625化学成分(质量分数,%)
Table 1 Chemical compositions of Inconel 625
C Si Mn Al Ti Ni Cr Fe Co Nb 0.01 0.50 0.50 0.40 0.40 58 ~ 68 20 ~ 30 5.0 1.0 3.1 ~ 4.1 表 2 CuCrZr化学成分(质量分数,%)
Table 2 Chemical compositions of CuCrZr
Al Mg Zr Cr Fe Si P 杂质 Cu 0.1 ~ 0.25 0.1 ~ .0.25 0.65 0.65 0.05 0.05 0.01 0.2 余量 表 3 焊接工艺参数
Table 3 Welding process parameters
编号 加速电压
U/kV束流
I/mA焊接速度
v/(mm·min−1)偏束距离
l/mm1 70 11 600 0.6 2 70 11 600 0.8 表 4 CuCrZr/Inconel 625能谱分析结果(原子分数,%)
Table 4 Energy spectrum analysis of CuCrZr/Inconel 625
位置 Zr Nb Mn Cr Ni Cu 可能相 A 1.36 6.88 2.97 24.03 62.80 1.96 Ni基固溶体 B 1.11 4.73 0.19 8.37 6.15 79.44 Cu基固溶体 C 1.05 4.65 0.13 4.21 8.93 81.03 Cu基固溶体 -
[1] Jiao Y, Xu G. DA optimization experiences in the HEPS lattice design[J]. Journal of Physics: Conference Series, 2018, 1067(3): 1367 − 1370.
[2] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学, 2014, 44(10): 1075 − 1094. Jiang XiaoMing, Wang JiuQing, Qin Qing, et al. Chinese high energy photon source and the test facility[J]. Science China, 2014, 44(10): 1075 − 1094.
[3] Pravin K N, Siva S N, Sreedhar G. High cycle fatigue behaviour of Inconel 625 weld overlay on AISI 316L plate[J]. Surface & Coatings Technology, 2021, 415: 127138.
[4] Vemanaboina H, Kotthinti N K, Chittemsetty V. Multipass dissimilar joints for SS316L to Inconel 625 using gas tungsten arc welding[J]. Materials Today:Proceedings, 2021, 46: 567 − 571. doi: 10.1016/j.matpr.2020.11.287
[5] Duan M, Han L, Sun W, et al. Development and performance test of CuCrZr/316L explosive welding plate for EAST lower divertor heat sink[J]. Fusion Engineering and Design, 2020, 160: 1 − 6.
[6] Zhao Sixiang, Wang Minjing, Kou Shengzhong, et al. Microstructures and mechanical properties of electron beam welded CuCrZr/Inconel/316L tube-to-tube junctions for WEST project[J]. Fusion Engineering and Design, 2020, 151: 111384. doi: 10.1016/j.fusengdes.2019.111384
[7] Wang Minjing, Zhao Sixiang, Wang Wanjing, et al. Preliminary results of CuCrZr/316L tube-to-tube junctions fabricated with rotary friction welding[J]. Fusion Engineering and Design, 2019, 148: 111275. doi: 10.1016/j.fusengdes.2019.111275
[8] Chai Mengyu, Zhang Jin, Zhang Zaoxiao, et al. Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds[J]. Applied Acoustics, 2017, 126: 101 − 113. doi: 10.1016/j.apacoust.2017.05.014
[9] 马锐, 吴继红, 施未来, 等. 316L(N)/CuCrZr中空结构件爆炸焊接工艺[J]. 解放军理工大学学报(自然科学版), 2016, 17(2): 180 − 186. Ma Rui, Wu Jihong, Shi Weilai, et al. Explosive welding process for manufacturing 316L(N)/CuCrZr hollow structural member[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2016, 17(2): 180 − 186.
[10] Chai M Y, Duan Q, Zhang Z X. Acoustic emission response of 316LN welded joint during intergranular corrosion[J]. Materials Science Forum, 2014, 809-810: 401 − 405. doi: 10.4028/www.scientific.net/MSF.809-810.401
[11] Lalvani H, Mandal P. Cold forming of Al-5251 and Al-6082 tailored welded blanks manufactured by laser and electron beam welding[J]. Journal of Manufacturing Processes, 2021, 68: 1615 − 1636. doi: 10.1016/j.jmapro.2021.06.070
[12] Li N, Wang T, Jiang S, et al. Microstructure evolution and strengthening mechanism of electron beam welded TiBw/Ti6Al4V composite joint[J]. Materials Characterization, 2021, 178: 111275. doi: 10.1016/j.matchar.2021.111275
[13] 刘莹莹, 李洁洁, 张乐. 电子束焊接工艺参数对Ti2AlNb/TC18接头组织与性能的影响[J]. 中国有色金属学报, 2021, 31(3): 699 − 706. doi: 10.11817/j.ysxb.1004.0609.2021-35973 Liu Yingying, Li Jiejie, Zhang Le. Effects of electron beam welding processing parameters on microstructure and properties of Ti2AlNb/TC18 joint[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 699 − 706. doi: 10.11817/j.ysxb.1004.0609.2021-35973
[14] Fan X, Shen X, Zhang Y, et al. Microstructure and mechanical properties of similar and dissimilar joints of RAFM and 316L by electron beam welding[J]. Fusion Engineering and Design, 2021, 162: 1 − 8.
[15] Niu H, Jiang H C, Zhao M J, et al. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding[J]. Journal of Materials Science & Technology, 2021, 61: 16 − 24.
[16] 邓彩艳, 尹庭辉, 龚宝明. TC11钛合金电子束焊接接头超高周疲劳性能[J]. 焊接学报, 2018, 39(4): 23 − 26. doi: 10.12073/j.hjxb.2018390088 Deng Caiyan, Yin Tinghui, Gong Baoming. Properties of very-high-cycle fatigue of TC11 titanium alloy EBW welded joints[J]. Transactions of the China Welding Institution, 2018, 39(4): 23 − 26. doi: 10.12073/j.hjxb.2018390088
[17] 王厚勤, 张秉刚, 王廷, 等. 60 mm厚TC4钛合金电子束焊接头疲劳性能[J]. 焊接学报, 2015, 36(5): 13 − 16. Wang Houqin, Zhang Binggang, Wang Ting. Fatigue property of TC4 joint with a thickness of 60 mm by electron beam welding[J]. Transactions of the China Welding Institution, 2015, 36(5): 13 − 16.
[18] 陈国庆, 张秉刚, 甄公博, 等. SiCp/Al复合材料电子束焊接接头组织及性能[J]. 焊接学报, 2013, 34(7): 73 − 76. Chen Guoqing, Zhang Binggang, Zhen Gongbo. Microstructure and mechanical properties of SiCp/Al joints by electron beam welding[J]. Transactions of the China Welding Institution, 2013, 34(7): 73 − 76.
[19] 张秉刚, 陈国庆, 张春光, 等. 偏束距离对铝合金/钢电子束焊接接头组织与性能的影响[J]. 焊接学报, 2011, 32(7): 1 − 4. Zhang Binggang, Chen Guoqing, Zhang Chunguang. Effect of beam offset on microstructure and mechanical properties of aluminum alloy /steel electron beam welded joints[J]. Transactions of the China Welding Institution, 2011, 32(7): 1 − 4.
[20] 张秉刚, 张春光, 陈国庆, 等. 5A02/0Cr18Ni9异种金属电子束焊接接头组织与性能[J]. 焊接学报, 2010, 31(5): 5 − 8. Zhang Binggang, Zhang Chunguang, Chen Guoqing. Microstructure and mechanical properties of 5A02/0Cr18Ni9 joints by electron beam welding[J]. Transactions of the China Welding Institution, 2010, 31(5): 5 − 8.
[21] Chen Guoqing, Zhang Binggang, Yang Yong, et al. Electron beam welding of SiCp/2024 and 2219 aluminum alloy[J]. China Welding, 2019, 28(4): 51 − 55.
[22] 郭青蔚, 王桂生, 郭庚辰. 常用有色金属二元合金相图集[M]. 北京: 化学工业出版社, 2010. Guo Qingwei, Wang Guisheng, Guo Gengchen. Phase atlas of commonly used non-ferrous metal binary alloys[M]. Beijing: Chemical Industry Press, 2010.
[23] 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009. Tang Renzheng, Tian Rongzhang. Binary alloy phase diagrams and crystal structure of intermediate phase[M]. Changsha: Central South Univerdity Press, 2009.
-
期刊类型引用(2)
1. 董海义,何平,李琦,郭迪舟,王徐建,马永胜,刘佰奇,黄涛,张磊,孙飞,刘天锋,田丕龙,杨雨晨,杨奇,王鹏程,刘佳明,刘顺明,孙晓阳,朱邦乐,谭彪. HEPS储存环真空系统研制. 真空. 2025(02): 1-11 . 百度学术
2. 张忠科,胡炜皓,雍春军. Inconel625高温合金等离子弧加丝焊接接头组织与性能. 有色金属工程. 2023(09): 23-32 . 百度学术
其他类型引用(0)