Formation mechanism of the grain boundary parallel to the edge of the “island-shaped zone” of the dissimilar steel joint
-
摘要: 对平行于异种钢接头碳钢熔合线附近 “ 岛状区”边缘的晶界进行了研究. 结果表明,平行于“ 岛状区”边缘的晶界可能是迁移晶界,也可能是凝固晶界.“ 岛状区”具有3种结构,第1种结构是由中心碳钢母材及其外围的成分过渡区组成,并且成分过渡区内的元素含量介于碳钢母材和焊缝金属之间;第2种结构仅由成分过渡区组成,并且其内部的元素含量也介于碳钢母材和焊缝金属之间;第3种结构也仅由成分过渡区组成,但其内部任意位置处的Ni质量分数均大于5% ~ 6%. 只有第1种和第2种结构的“ 岛状区” 才有可能形成平行于其边缘的迁移晶界,而第3种结构的“ 岛状区”则不能形成平行于其边缘的迁移晶界. 平行于“ 岛状区”边缘的凝固晶界则是由“ 岛状区”表面垂直方向上生长的短小胞状晶与其相邻的亚晶粒束相交而形成的.Abstract: The grain boundary parallel to the edge of the “island-shaped zone” (ISZ) near the carbon steel fusion line of the dissimilar steel joint was studied. It was shown that the grain boundary parallel to the edge of the ISZ might be the migrated grain boundary or the solidified grain boundary. The ISZ had three kinds of structures, the first was consisted of the carbon steel base material and the composition transition region of its periphery, and the elements content in the composition transition region was between the carbon steel base material and the weld metal; the second was only consisted of the composition transition region, and the elements content in the composition transition region was also between the carbon steel base material and the weld metal; the third was only consisted of the composition transition region, but the Ni content in the composition transition region was higher than 5% − 6%. Only the ISZ with the first and second structures were possible to form the migrated grain boundary parallel to the edge of the ISZ, but the ISZ with the third structure could not form the migrated grain boundary parallel to the edge of the ISZ. The solidified grain boundary parallel to the edge of the ISZ was formed by the intersection of short cellular grains growing perpendicular to the ISZ surface with their adjacent subgrain bundles.
-
-
表 1 Q235母材、SUS321母材和ER309焊丝的化学成分(质量分数,%)
Table 1 Chemical compositions of Q235 base metal, SUS321 base metal and ER309 wire
材料 C Si Mn S P Cr Ni Mo Ti Fe Q235 ≤0.20 ≤0.35 ≤1.40 ≤0.045 ≤0.045 — — — — 余量 SUS321 ≤0.12 ≤1.00 ≤2.00 ≤0.030 ≤0.045 17.00 ~ 19.00 8.00 ~ 11.00 — ≤0.75 余量 ER309 ≤0.12 0.30 ~ 0.65 1.00 ~ 2.50 ≤0.030 ≤0.030 23.00 ~ 25.00 12.00 ~ 14.00 ≤0.75 — 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
电弧电压U/V 焊接电流I/A 焊接速度v/(mm·s−1) 脉冲频率f/Hz 焊丝伸出长度L/mm 29.6 296 7.3 139 24 -
[1] Omar A A. Effect of welding parameters on hard zone formation at dissimilar metal metal welds[J]. Welding Journal, 1998, 77(2): 86 − 93.
[2] 李克俭, 李晓刚, 张宇, 等. 异种金属焊接接头微观组织演化及高温失效机理综述[J]. 电焊机, 2020, 50(9): 17 − 43. doi: 10.7512/j.issn.1001-2303.2020.09.03 Li Kejian, Li Xiaogang, Zhang Yu, et al. Microstructure evolution and high temperature failure mechanism of dissimilar metal welded joints[J]. Electric Welding Machine, 2020, 50(9): 17 − 43. doi: 10.7512/j.issn.1001-2303.2020.09.03
[3] Alexandrov B T, Lippold J C, Sowards J W, et al. Fusion boundary microstructure evolution associated with embrittlement of Ni-base alloy overlays applied to carbon steel[J]. Welding in the World, 2013, 57(1): 39 − 53. doi: 10.1007/s40194-012-0007-1
[4] 陆文雄, 张汉谦, 吴宇, 等. 异种钢焊接接头熔合区中的“富奥氏体带”[J]. 焊接学报, 1988, 9(3): 134 − 140. Lu Wenxiong, Zhang Hanqian, Wu Yu, et al. “Austenite-rich band” in the fusion zone of dissimilar steel welded joint[J]. Transactions of the China Welding Institution, 1988, 9(3): 134 − 140.
[5] Soysal T, Kou S, Tat D, et al. Macrosegregation in dissimilar-metal fusion welding[J]. Acta Materialia, 2016, 110(1): 149 − 160.
[6] Nelson T W, Lippold J C, Mills M J. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds, part2: on-cooling transformations[J]. Welding Journal, 2000, 79(10): 267s − 277s.
[7] 郑韶先, 时哲, 韩峰, 等. 超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析[J]. 焊接学报, 2015, 36(2): 67 − 70. Zheng Shaoxian, Shi Zhe, Han Feng, et al. Ultra-narrow-gap weld of 1Cr18Ni9Ti stainless steel with constricted arc by ultra-fine granular flux[J]. Transactions of the China Welding Institution, 2015, 36(2): 67 − 70.
[8] Zheng Shaoxian, Li Xiaolei, Che Jun, et al. Weld formation and heating mechanism in ultra-narrow gap with constricted arc by ultra-fine granular flux[J]. China Welding, 2012, 21(1): 39 − 43.
[9] Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels[J]. Welding Journal, 1994, 73(6): 129s − 139s.
[10] 潘春旭. 异种钢及异种金属焊接——显微结构特征及其转变机理[M]. 北京: 人民交通出版社, 2000. Pan Chunxu. Welding of dissimilar steel and dissimilar metals—microstructural characteristics and its transformation mechanism[M]. Beijing: China Communications Press, 2000.
[11] 郑韶先, 曾道平, 孟倩, 等. 填充ER309焊丝的异种钢接头二型边界形成机理[J]. 焊接学报, 2021, 42(4): 56 − 61. doi: 10.12073/j.hjxb.20200902001 Zheng Shaoxian, Zeng Daoping, Meng Qian, et al. Formation mechanism analysis of the type-II boundary of dissimilar steel joint with the filler metal of ER309[J]. Transactions of the China Welding Institution, 2021, 42(4): 56 − 61. doi: 10.12073/j.hjxb.20200902001
[12] 孙齐磊, 邓化凌. 工程材料及其热处理[M]. 北京: 机械工业出版社, 2016. Sun Qilei, Deng Hualing. Engineering material and heat treatment [M]. Beijing: China Machine Press, 2016.
[13] 埃里希·福克哈德. 不锈钢焊接冶金[M]. 栗卓新, 朱学军, 译. 北京: 化学工业出版社, 2004. Erich Folkhard. Welding metallurgy of stainless steel[M]. Li Zhuoxin, Zhu Xuejun , translated. Beijing: Chemical Industry Press, 2004.
-
期刊类型引用(12)
1. 牛宗冉,莫文剑,袁志钟,易翠,王致远. 铜磷锡镍粉末钎料的钎焊性能和显微组织. 粉末冶金工业. 2025(01): 31-37 . 百度学术
2. 钟素娟,秦建,王蒙,崔大田,龙伟民. CuSn预合金粉芯复合银钎料的润湿铺展机理. 焊接学报. 2023(02): 16-21+129-130 . 本站查看
3. 郭亚东,陈明亮. 黄铜Type-C接口绿激光焊接工艺研究. 热加工工艺. 2022(09): 148-150 . 百度学术
4. 张冠星,钟素娟,董媛媛,刘晓芳,常云峰,薛行雁. 焊后钎剂残渣腐蚀行为分析. 焊接. 2022(11): 47-53 . 百度学术
5. 王蒙,张冠星,钟素娟,沈元勋,龙伟民,董宏伟,刘晓芳. 低熔合金粉末对药芯银钎料钎焊过程的影响. 稀有金属材料与工程. 2021(08): 2859-2866 . 百度学术
6. 刘捷,黄建林,任刚,黄映杰. 黄铜-钢异种金属激光熔覆技术研究及应用. 江西科学. 2021(06): 1077-1079 . 百度学术
7. 刘晓芳,张冠星,常云峰,王蒙,钟素娟. 干燥过滤器焊后泄露原因. 焊接. 2021(10): 34-37+62-63 . 百度学术
8. 李华晨,周广涛,陈梅峰,刘雪松,崔贺鹏,杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能. 焊接学报. 2020(10): 65-72+101 . 本站查看
9. 王毅. 黄铜与铝合金纳秒激光焊接的工艺研究. 材料保护. 2020(12): 91-94+105 . 百度学术
10. 张敏霞,潘光勇,鲍熠朗. 空调四通阀焊缝泄漏原因分析. 理化检验(物理分册). 2019(12): 859-863 . 百度学术
11. 于奇,潘建军,于新泉,纠永涛,鲍丽. 微量硅元素对铜磷锡粉状钎料性能的影响. 焊接. 2019(10): 17-20+66 . 百度学术
12. 刘文东,李红. 黄铜与不锈钢异种金属激光焊接工艺研究. 应用激光. 2019(06): 966-969 . 百度学术
其他类型引用(1)