Fatigue crack dynamic monitoring of weathering steel joint based on ultrasonic phased array
-
摘要: 借助超声相控阵技术对耐候钢对接接头开展疲劳失效过程动态监测. 基于超声波探头的信号特征,研究其扇形扫描反射过程,建立实时扫查方案, 并对10 mm厚的耐候钢对接接头实施实时监测.结果表明,当疲劳寿命为5 × 104次时,相控阵检测到多个裂纹从对接接头焊趾部位萌生,并沿着板厚扩展,当疲劳寿命超过3.5 × 105次时,裂纹开始快速扩展. 与疲劳试验断口对比发现,基于相控阵检测得到的裂纹尺寸与试验结果基本一致,验证了相控阵裂纹动态检测的准确性. 根据裂纹深度a、裂纹长度2c与循环次数N关系,明确了裂纹动态演化行为,并获得中厚板耐候钢对接接头表面裂纹的扩展演化规律.Abstract: In this paper, ultrasonic phased array technology was used to monitor the fatigue failure process of weathering steel butt joints. Based on the signal characteristics of ultrasonic probe, the fan-shaped scanning reflection process was studied, and a real-time scanning scheme was established for real-time monitoring of 10 mm thick weather resistant steel butt joints. The results show that when the fatigue life was 5 × 104 cycles, multiple cracks initiated at the weld toe of the butt joint and propagated along the plate thickness were detected by phased array. The cracks begin to expand rapidly when the fatigue life exceeded 3.5 × 105 cycles. Compared with the fatigue test fracture surface, it was found that the crack size based on the phased array detection was basically consistent with the test results, which validated the accuracy of the phased array crack dynamic detection. According to the relationship between the crack depth a, crack length c and cycle number N, the dynamic evolution of cracks was determined, the law of surface crack growth and evolution of weathering steel butt joint of medium and thick plate was built up.
-
Keywords:
- ultrasonic phased array /
- weathering steel /
- crack size /
- fatigue life
-
-
表 1 SMA490BW母材与CHW-55CNH焊丝成分(质量分数, %)
Table 1 Compositions of SMA490BW base metal and CHW-55CNH wire
材料 C Mn Si P S Cr Fe SMA490BW ≤0.18 ≤1.4 0.15 ~ 0.65 ≤0.035 ≤0.035 0. 45 ~ 0.75 余量 CHW-55CNH ≤0.1 1.2 ~ 1.6 ≤0.6 ≤0.025 ≤0.02 0.3 ~ 0.9 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
焊接电压
U/V焊接电流
I/A焊接速度
v/(mm·s−1)23 227 3.0 表 3 疲劳试验参数
Table 3 Fatigue testing parameter
板厚
t/mm加载宽度
b/mm名义应力
σ /MPa应力比
R最小加载力
Fmin/kN最大加载力
Fmax/kN疲劳寿命
N/次10 80 195 0. 1 21. 6 216 371 557 -
[1] 刘丽宏, 齐慧滨, 卢燕平, 等. 耐大气腐蚀钢的研究概况[J]. 腐蚀科学与防护技术, 2003, 15(2): 86 − 89. doi: 10.3969/j.issn.1002-6495.2003.02.007 Li Lihong, Qi Huibin, Lu Yanping, et al. An overview of the research of atmospheric corrosion resistant steels[J]. Corrosion Science and Protection Technology, 2003, 15(2): 86 − 89. doi: 10.3969/j.issn.1002-6495.2003.02.007
[2] 路浩, 邢立伟, 陈大军. 高速列车用耐候钢活性MAG焊接技术[J]. 焊接学报, 2013, 34(11): 105 − 108. Lu Hao, Xing Liwei, Chen Dajun. Weathering steel active MAG welding technology for high-speed trains[J]. Transactions of the China Welding Institution, 2013, 34(11): 105 − 108.
[3] Wang Y, Tsutsumi S, Kawkubo T, et al. Microstructure and mechanical properties of weathering mild steel joined by friction stir welding[J]. Materials Science & Engineering A, 2021, 823: 141715.
[4] Sun Changli, Gang Tie, Chi Dazhao. UPA based 3D visualization of discontinuities in great thickness EBW seam[J]. China Welding, 2016, 25(2): 1 − 5.
[5] 张藩, 宋小军, 曾俊冬, 等. 基于全聚焦成像算法的骨折超声检测[J]. 上海电力大学学报, 2021, 37(1): 78 − 82. doi: 10.3969/j.issn.2096-8299.2021.01.015 Zhang Fan, Song Xiaojun, Zeng Jundong, et al. Fracture ultrasonic detection based on total focusing imaging algorithm[J]. Journal of Shanghai University of Electric Power, 2021, 37(1): 78 − 82. doi: 10.3969/j.issn.2096-8299.2021.01.015
[6] 王瑞璇, 尹力, 胡远涛, 等. 数值模拟技术在超声相控阵检测技术中的应用[J]. 焊接技术, 2020, 49(S1): 44 − 46. Wang Ruixuan, Yin Li, Hu Yuantao, et al. Application of numerical simulation technology in ultrasonic phased array detection technology[J]. Welding Technology, 2020, 49(S1): 44 − 46.
[7] 万家瑞, 曾建锋, 李兆恒. 输水钢管加劲环半熔透T型焊缝相控阵检测[J]. 广东水利水电, 2022(11): 80 − 84. Wan Jiarui, Zeng Jianfeng, Li Zhaoheng. Phased array detection of sSemi-penetration T-joint weld of steel pipe stiffening ring[J]. Guangdong Water Resources and Hydropower, 2022(11): 80 − 84.
[8] 王业民, 杨鹏, 陈厌灾, 等. 奥氏体复合材料压力容器对接接头的相控阵超声检测[J]. 无损检测, 2022, 44(8): 36 − 42,58. doi: 10.11973/wsjc202208007 Wang Yemin, Yang Peng, Chen Yanzai, et al. Phased array ultrasonic testing for butt joints of austenitic composite pressure vessel[J]. Nondestructive Testion, 2022, 44(8): 36 − 42,58. doi: 10.11973/wsjc202208007