Effect of O2 content on soldering quality in Sn-9Zn-2.5Bi-1.5In low-temperature wave soldering
-
摘要: 制备了一种新型Sn-9Zn-2.5Bi-1.5In钎料,开发了一套波峰焊氮气保护系统,考察了该钎料在不同氧含量的环境下的焊接质量. 结果表明,开发的氮气保护系统通过增加氮气流量可以将焊接区域内的动态氧含量降低到0.06%以下. 降低焊接区氧含量,可显著减少桥连、填充不良、气孔3类缺陷的数量,将不良率控制在0.20%以内. 在氧含量0.50%的临界值以下,该钎料可在锡炉设定温度为225 ℃的条件下进行低温焊接,焊接效果满足规模化生产需求. 通过能谱分析发现氧化物表面Zn元素含量比Sn-9Zn-2.5Bi-1.5In钎料升高84.9%,Zn元素的易氧化倾向是导致钎料形成大量氧化渣的主要原因. 降低焊接区域的氧含量可以有效抑制氧化渣的形成.采用氮气保护的方法可以解决Sn-Zn钎料在高氧环境下易出现的焊接缺陷问题,从而实现225 ℃低温波峰焊.Abstract: A new Sn-9Zn-2.5Bi-1.5In solder is prepared, a wave soldering nitrogen protection system is developed, and the soldering quality of the solder under different oxygen content is investigated. The results show that the modified nitrogen protection system can reduce the dynamic oxygen content to less than 0.06% by increasing the nitrogen flow. Reducing O2 content in the soldering zone can significantly decrease the number of bridging, poor filling and pore defects, and the failure rate is controlled within 0.20%. Under the critical value of 0.50% oxygen content, the joint can be soldered at low temperature under the condition of 225 ℃ setting temperature. The soldering quality can meet the needs of large-scale production. EDS analysis shows that the content of Zn in the oxide dregs is increased by 84.9% compared with the original Sn-9Zn-2.5Bi-1.5In alloy, and the easy oxidation tendency of Zn leads to the formation of a large number of oxide slags. Reducing the oxygen content in the soldering zone can restrain the formation of oxide slags on the wave's surface. Nitrogen protection can solve the soldering defects of Sn-Zn alloy to realize low-temperature wave soldering at 225 ℃.
-
-
图 4 合格及缺陷焊点示意图
Figure 4. Pictures of qualified and defective solder joints. (a) appearance of qualified joints; (b) X-ray results of qualified joints; (c) appearance of class A defect; (d) X-ray results of class A defect; (e) appearance of class B defect; (f) X-ray results of class B defect; (g) appearance of class C defect; (h) X-ray results of class C defect
表 1 试验参数设置
Table 1 Experimental parameter settings
锡炉温度TS /℃ 轨道倾角θ/(°) 喷雾流量Q/(mL·min−1) 链速vc /(mm·min−1) 预热温度Tf /℃ 氧含量δ(%) 225 4.5 65 1200 130 ~ 170 0.05,0.50,1.00,1.50,2.00 表 2 各金属氧化物的标准生成吉布斯自由能
Table 2 Standard Gibbs free energy of formation for eachmetal oxide
氧化物 标准生成吉布斯自由能 $\Delta G_{{\rm{f,T}}}^0$ /(kJ·g−1)298 K 400 K 500 K 600 K SnO2 −260.2 −249.7 −239.7 −228.8 ZnO −318.6 −312.8 −298.5 −288.9 Bi2O3 −165.7 −156.5 −147.7 −138.3 In2O3 — — −180.5 −171.7 CuO −129.4 −119.7 −111.0 −101.7 Ag2O −10.5 −3.8 2.5 8.8 PbO −188.8 −178.8 −168.7 −159.5 表 3 氧化渣表面EDS能谱分析结果(%)
Table 3 Results of EDS analysis on oxidizing slag surface
项目 Sn Zn Bi In O 氧化物质量分数 69.90 16.64 5.51 2.53 5.77 氧化物原子分数 47.07 20.35 1.97 1.76 28.85 锡锌合金质量分数 87.00 9.00 2.50 1.50 0 -
[1] 王佐. 电子产品在焊接过程中的可靠性探究[J]. 电子测试, 2015(4): 128 − 130. doi: 10.3969/j.issn.1000-8519.2015.04.050 Wang Zuo. Research on reliability of electronic products in welding process[J]. Electronic Test, 2015(4): 128 − 130. doi: 10.3969/j.issn.1000-8519.2015.04.050
[2] 孙文栋. Sn-Zn系中温无铅焊接的性能优化研究及应用[D]. 北京: 清华大学, 2020. Sun Wendong. Research and application of performance optimization of Sn-Zn system medium temperature lead-free Soldering[D]. Beijing: Tsinghua University, 2020.
[3] Abtew M, Selvaduray G. Lead-free solders in microelectronics[J]. Materials Science and Engineering:R:Reports, 2000, 27(5): 95 − 141.
[4] 王正宏, 于红娇, 李胜明, 等. Sn-Zn-Bi-In-P新型无铅焊料性能研究[J]. 电子元件与材料, 2014, 33(11): 95 − 98. Wang Zhenghong, Yu Hongjiao, Li Shengming, et al. Study on properties of Sn-Zn-Bi-In-P new lead-free solder[J]. Electronic Components and Materials, 2014, 33(11): 95 − 98.
[5] 周健, 孙扬善, 薛烽. Sn-Zn-Bi无铅 Sn-Zn-Bi 无铅焊料表面张力及润湿性研 究表面张力及润湿性研究[J]. 电子元件与材料, 2005, 24(8): 49 − 52. doi: 10.3969/j.issn.1001-2028.2005.08.017 Zhou Jian, Sun Yangshan, Xue Feng. Study on surface tension and wettability of Sn-Zn-Bi lead-free solder[J]. Electronic Components and Materials, 2005, 24(8): 49 − 52. doi: 10.3969/j.issn.1001-2028.2005.08.017
[6] Chen G, Li X, Ma J. Effect of thermal cycling on the growth of intermetallic compounds at the Sn-Zn-Bi-In-P lead-free solder/Cu interface[J]. Journal of Electronic Materials, 2006, 35(10): 1873 − 1878. doi: 10.1007/s11664-006-0170-5
[7] Ma J, Chen G, Li X, et al. Study of New Types Lead-Free Solder Alloys of Sn-Ag-Cu-Al-Ni and Sn-Zn-Bi-In-P[C]//2006 7th International Conference on Electronic Packaging Technology. IEEE, Shanghai, China, 2006: 1 − 7.
[8] Wu C, Law C, Yu D Q, et al. The wettability and microstructure of Sn-Zn-RE alloys[J]. Journal of Electronic Materials, 2003, 32: 63 − 69. doi: 10.1007/s11664-003-0238-4
[9] 黄惠珍, 赵亚楠, 彭如意, 等. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23 − 28. doi: 10.12073/j.hjxb.2019400149 Huang Huizhen, Zhao Yanan, Peng Ruyi, et al. Growth kinetics of Intermetallic compounds at liquid-solid interface of Sn-9Zn-0.1s/Cu solder joints[J]. Transactions of the China Welding Institution, 2019, 40(6): 23 − 28. doi: 10.12073/j.hjxb.2019400149
[10] 韩若男, 薛松柏, 叶焕, 等. Sn-Zn系无铅钎料润湿性的研究进展[J]. 焊接, 2011(11): 23 − 27. doi: 10.3969/j.issn.1001-1382.2011.11.005 Han Ruonan, Xue Songbai, Ye Huan, et al. Research progress on wettability of Sn-Zn lead-free solder[J]. Welding & Joining, 2011(11): 23 − 27. doi: 10.3969/j.issn.1001-1382.2011.11.005
[11] Liu H, Xue F, Zhou J. Study of flux on wetting behavior of Sn-Zn lead-free solders[J]. Advanced Materials Research, 2011, 189-193: 3230 − 3237.
[12] 肖盈盈, 周健, 薛烽, 等. Sn-Zn系无铅焊料研究和亟待解决的问题[J]. 电子与封装, 2006, 6(4): 10 − 14. doi: 10.3969/j.issn.1681-1070.2006.04.003 Xiao Yingying, Zhou Jian, Xue Feng, et al. Research and urgent problems of Sn-Zn lead-free solder[J]. Electronics & Packaging, 2006, 6(4): 10 − 14. doi: 10.3969/j.issn.1681-1070.2006.04.003
[13] Yoon S W, Choi W K, Lee H M. Calculation of surface tension and wetting properties of Sn-Based solder alloys[J]. Scripta Materialia, 1999, 40(3): 297 − 302. doi: 10.1016/S1359-6462(98)00417-5
[14] 魏秀琴, 周浪, 黄惠珍. 氧化对Sn-Zn系无铅焊料润湿性的影响[J]. 中国有色金属学报, 2009, 19(1): 174 − 178. doi: 10.3321/j.issn:1004-0609.2009.01.028 Wei Xiuqin, Zhou Lang, Huang Huizhen. Effect of oxidation on wettability of Sn-Zn lead-free solder[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 174 − 178. doi: 10.3321/j.issn:1004-0609.2009.01.028
-
期刊类型引用(12)
1. 牛宗冉,莫文剑,袁志钟,易翠,王致远. 铜磷锡镍粉末钎料的钎焊性能和显微组织. 粉末冶金工业. 2025(01): 31-37 . 百度学术
2. 钟素娟,秦建,王蒙,崔大田,龙伟民. CuSn预合金粉芯复合银钎料的润湿铺展机理. 焊接学报. 2023(02): 16-21+129-130 . 本站查看
3. 郭亚东,陈明亮. 黄铜Type-C接口绿激光焊接工艺研究. 热加工工艺. 2022(09): 148-150 . 百度学术
4. 张冠星,钟素娟,董媛媛,刘晓芳,常云峰,薛行雁. 焊后钎剂残渣腐蚀行为分析. 焊接. 2022(11): 47-53 . 百度学术
5. 王蒙,张冠星,钟素娟,沈元勋,龙伟民,董宏伟,刘晓芳. 低熔合金粉末对药芯银钎料钎焊过程的影响. 稀有金属材料与工程. 2021(08): 2859-2866 . 百度学术
6. 刘捷,黄建林,任刚,黄映杰. 黄铜-钢异种金属激光熔覆技术研究及应用. 江西科学. 2021(06): 1077-1079 . 百度学术
7. 刘晓芳,张冠星,常云峰,王蒙,钟素娟. 干燥过滤器焊后泄露原因. 焊接. 2021(10): 34-37+62-63 . 百度学术
8. 李华晨,周广涛,陈梅峰,刘雪松,崔贺鹏,杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能. 焊接学报. 2020(10): 65-72+101 . 本站查看
9. 王毅. 黄铜与铝合金纳秒激光焊接的工艺研究. 材料保护. 2020(12): 91-94+105 . 百度学术
10. 张敏霞,潘光勇,鲍熠朗. 空调四通阀焊缝泄漏原因分析. 理化检验(物理分册). 2019(12): 859-863 . 百度学术
11. 于奇,潘建军,于新泉,纠永涛,鲍丽. 微量硅元素对铜磷锡粉状钎料性能的影响. 焊接. 2019(10): 17-20+66 . 百度学术
12. 刘文东,李红. 黄铜与不锈钢异种金属激光焊接工艺研究. 应用激光. 2019(06): 966-969 . 百度学术
其他类型引用(1)