Advances in friction welding technology based on friction between workpiece and external consumable tool
-
摘要: 摩擦焊是一类依靠摩擦产热来实现材料连接的固相焊接技术,具有接头质量高、焊接变形小、节能环保等优点,广泛应用于航空航天、交通运输、矿山机械、海洋装备等领域. 近年来,摩擦焊技术发展迅速,一些改型的工艺相继产生. 根据相互摩擦对象的属性对摩擦焊技术进行了分类,归纳了各自的主要工艺特点.对基于工件与外部可消耗工具相互摩擦的焊接技术进行了系统综述,重点介绍了径向摩擦焊、摩擦-铆接、摩擦塞补焊、摩擦堆焊和涡流搅拌摩擦焊的基本工艺原理和最新研究进展,同时对以上工艺技术的未来发展展开了讨论,以期为相关领域的科研工作者提供参考.Abstract: Friction welding is a kind of solid-state welding technology that depends on the friction heat generation to realize materials joining. Owing to the advantages of high joint quality, low welding distortion, energy saving and environmental protection, etc., it is widely used in aerospace, transportation, mining machinery, marine equipment and other fields. In the last few decades, friction welding technology has developed rapidly, and some modified processes have been born. In this paper, the current friction welding methods were summarized according to the properties of mutual friction objects, and then the methods based on the friction between workpiece and consumable external tool were principally reviewed. The process principles and latest research progresses of radial friction welding, friction riveting, friction plug welding, friction surfacing and vortex- friction stir welding were mainly introduced, and the future development of the above welding methods is discussed, to provide reference for researchers in the related field.
-
0. 序 言
随着我国经济的快速发展及高性能铝合金的不断研发,凭借自身优良的物理性能,较小的比重、较高的比强度及良好的导电导热性、延展性,在船舶制造、海洋工程、核电设备等领域对高性能铝合金厚板结构的需求越来越大,相应的对厚板的焊接技术要求也越来越高[1-4]. 对于厚板的焊接,窄间隙焊接技术已经广泛应用在工业生产中[5-7],而激光焊接由于其具有热输入小、热影响区小、焊接变形小等优点,日本焊接界将窄间隙同激光焊并称为21世纪现代工业生产中最适合厚板焊接的两种技术[8-9].
对于铝合金厚板的激光焊接来说,气孔问题是铝合金焊接的常见问题,也是最难解决的问题之一. 文献[10-11]中认为铝合金激光焊接极易产生工艺型气孔的主要原因是因为焊接过程中匙孔底部易被剧烈运动的液态熔池金属所封闭及等离子体波动时会卷入保护气体,又由于铝合金较高的冷却速率,这些被封闭在液态金属中的气泡很难逸出,最终以气孔的形式留于焊缝中. 赵琳等人在焊接钢时采用激光光束摆动的方式来控制气孔,通过采用聚焦光束摆动的方式并调节光束摆动频率等参数可获得极低气孔率的焊接接头[12]. 高频振荡扫描激光束能够改变焊接温度场分布和熔池流动状态,进而改善焊缝成形,消除冶金缺陷,提高焊接质量[13]. 扫描焊接在解决钢的焊接缺陷国内外已有较多研究,但是将激光扫描焊接技术应用到铝合金的气孔抑制方面的研究还很少.
为了克服铝合金焊接的气孔问题,文中采用了激光扫描填丝焊接方法,以5A06铝合金为研究对象,重点讨论在窄间隙填丝焊接条件下,激光扫描填丝焊接工艺参数对气孔率的影响规律.
1. 试验方法
试验所用的母材为开有一定坡口角度的150 mm × 150 mm × 18 mm,与300 mm × 300 mm × 130 mm厚5A06铝合金,焊前状态为H112,为了补偿在焊接过程铝合金中镁元素的烧损,选用含镁元素含量较高的ER5356焊丝与母材等成分匹配,焊丝直径选择1.2 mm,母材及焊丝的化学成分见表1.
表 1 试验材料化学成分(质量分数,%)Table 1. Chemical composition of the material材料 Cu Si Fe Ti Zn Mn Mg Cr Al 母材5A06 0.1 0.4 0.4 0.15 0.25 0.5 6.0 — 余量 焊丝ER5356 0.1 0.25 0.4 0.15 0.25 0.1 5.0 0.03 余量 铝合金激光扫描焊接试验在激光扫描焊接工作站进行,激光扫描焊接试验工作站主要包括以下几部分组成:Trumpf公司生产的Trudisk6002 disk型激光器,激光波长1 070 nm,额定最大输出功率为6 000 W;激光枪枪头为Trumpf公司生产的可编程聚焦镜组,聚焦镜焦距为550 mm,最大扫描速度为1 000 mm/min;MOTOMAN机器人;福尼斯送丝机.
焊接方法如图1所示,填充焊丝以前送丝方式进入焊接区,通过激光加热及熔池热辐射共同作用下熔化,激光束以一定运动轨迹、运动速度、运动半径与竖直平面呈15°角方向作用到焊缝,保护气体为99.9%的纯氩气. 试验均采用未熔透的焊接方式.
2. 试验结果与分析
试验首先研究了扫描方式(圆形扫描轨迹、垂直轨迹、平行轨迹)、扫描幅度、扫描频率对单层单道激光填丝焊缝气孔率的影响规律,扫描轨迹的定义方式为激光束运动方向与焊接方向的相对位置关系,四种光束运动特征如图2所示. 然后根据所得到的单层单道焊缝最佳工艺区间,选取合理的窄间隙坡口形式完成130 mm铝合金大厚板焊接.
试验中固定不变参数为激光功率6 kW,焊接速度1 m/min,送丝速度9 m/min,保护气体为氩气,保护气体流量为15 ~ 25 L/min,激光束焦点位于焊接区表面.
2.1 扫描方式对气孔率的影响
不同扫描轨迹直接表现为激光束对熔池不同热输入方式,不同激光输入方式对熔池搅拌作用不同,液态熔池的稳定性及金属液流动方式必定有所差别. 试验主要研究了四种不同激光束运动轨迹对焊接气孔率的影响规律. 图3反映的是四种不同激光运动模式下铝合金填丝焊接气孔RT图.
可以看到常规单激光填丝焊接及光束以垂直或平行方式运动时,焊缝中所形成的气孔尺寸较大,数量也较多,而当激光束以圆形方式扫描时,能大幅度降低焊缝的气孔率,对铝合金工艺型气孔有极好的抑制作用. 这说明当激光束以圆形方式运动起来后,能极大地稳定窄间隙内的熔池流动,使激光焊接产生的匙孔闭合率大大降低.
图4为四种扫描轨迹焊缝气孔率的定量对比. 常规单激光焊接和光束以垂直轨迹扫描的焊缝气孔率较高,达到了13%以上;当激光束的运动方向采用与焊接方向平行时,能达到一定的抑制气孔的作用,但效果并不是十分明显,气孔率达到了9.6%;当激光束以圆形轨迹扫描运动后,焊缝的气孔率急剧降低,仅仅为0.59%,不但气孔的数量上大幅减少,焊道单个气孔的尺寸相比于其他扫描轨迹也有大幅降低.
综上所述,当激光束以圆形的方式扫描时焊缝气孔率非常低,因此后续的试验均在圆形轨迹的条件下进行研究.
2.2 扫描幅度对气孔率的影响
扫描幅度决定了热源的作用面积,扫描幅度越大,激光束作用面积越大,能量越分散,从而对焊缝的气孔率产生影响. 为了考虑单一变量对试验结果的影响,激光束的扫描频率定为100 Hz.
图5给出了扫描频率在100 Hz条件下,扫描幅度从0.4 ~ 1.5 mm变化时焊缝气孔率的X射线图,图6为气孔率随扫描幅度的变化规律,可以看出气孔率的变化与扫描幅度成反比趋势,气孔率随着扫描幅度的增加而逐渐降低,值得注意的,扫描幅度在1 mm时气孔率发生突变,气孔率急剧减少,当扫描幅度达到1.2 mm时已经几乎没有工艺型气孔的产生.
2.3 扫描频率对气孔率的影响
扫描频率决定激光束对熔池的搅拌速度,频率越快,搅拌速度越高. 同样的,扫描频率也会极大的影响了焊接过程中熔池、匙孔和等离子体的稳定性,进而对焊缝的气孔率造成较大影响.
当扫描幅度在1 mm以下时,随着扫描频率增加气孔变化幅度不大,都维持在一个较高水平,选取具有代表性的扫描幅度0.6 mm,如图7所示,扫描频率变化区间为50 ~ 300 Hz,气孔率维持在12%左右,如图8;而当扫描幅度在1 mm以上时,随着扫描频率的增加气孔率逐渐减小,选取具有代表性的扫描幅度1.2 mm,如图9所示,扫描频率变化区间为50 ~ 200 Hz,在最高频率附近时几乎不产生工艺型气孔,如图8所示.
2.4 130 mm厚铝合金单道多层填充焊接验证
根据以上总结单道单层填丝焊焊接参数扫描方式、扫描幅度、扫描频率对焊缝的气孔率的影响规律,选取完成130 mm大厚板焊接优化后的工艺参数如表2、表3所示.
表 2 扫描类工艺参数Table 2. Scanning process parameters扫描方式 扫描幅度 d/mm 扫描频率 f/Hz 圆形扫描 1 ~ 1.5 100 ~ 150 表 3 非扫描类工艺参数Table 3. Laser without scanning process parameters激光功率 P/kW 焊接速度v/(m·min−1) 送丝速度 vf/(m·min−1) 6 0.8 ~ 1 7.5 ~ 9 图10为优化后的单层单道激光扫描填丝焊接焊缝成形、气孔率与常规单激光焊缝的对比. 常规激光焊的焊缝表面成形不良,平整度极差,焊接过程极不稳定,与常规激光焊相比摆动焊接焊缝成形有较大改善,成形光滑均匀. 这是因为当激光束在窄间隙内以圆形运动时,熔融金属在窄间隙内的流动方式由无序变为有序,这种有序的熔池运动方式大大降低了由于匙孔蒸汽反冲压力不能克服由重力引起的流体静压力及由金属流动产生的流体静压力和表面张力而导致的匙孔湮灭的可能,匙孔及熔池的动态行为又与金属蒸汽/等离子体相互作用并动态关联着,因此圆形扫描轨迹在稳定匙孔的同时也增强了等离子体的稳定性,整个熔池处于一种稳定的动态平衡.
根据前期大量的试验研究,我们最终选择的130 mm厚板坡口尺寸如图11所示,窄间隙底部宽度3 mm,钝边15 mm,单边坡口角度为2度.
对130 mm铝合金大厚板采用优化后的单层单道激光扫描填丝工艺进行多层填充焊接,图12为焊接后所得到的焊缝接头宏观形貌,除却打底层,试验共计45层完成填充,且均为单道多层填充,每层焊后都需要用特制的钢刷清理焊道表面的氧化物黑灰,并用酒精擦拭干净,在确保焊道表面没有明显杂质后才能进行下一层填充焊接,每层焊后都需要进行特殊的去应力处理,最终焊后变形角度为1.5度,每层填充熔深约为2.8 mm,焊缝宽度约为6 mm,焊缝形状整齐,稳定性很好,无明显焊接缺陷. 对铝合金焊后试件沿焊缝厚度方向进行9 MeV的ICT探伤,对焊缝宽度方向共分8层进行检测,得到每个纵截面的CT图像,如图13所示. 对每个纵截面的CT图像进行气孔率计算,结果显示平均气孔率为1%,无侧壁及层间未熔合、裂纹等焊接缺陷.
3. 结 论
(1)当扫描激光焊的激光束运动轨迹设计为圆形时,能有效抑制铝合金焊缝中工艺型气孔产生.
(2)扫描幅度的增大能显著降低焊缝的气孔率,当扫描幅度大于1 mm,扫描频率选取相应幅度对应的最高频率时,能够很好抑制工艺型气孔产生.
(3)在国内首次完成了130 mm厚5A06铝合金大厚板激光扫描填丝优质焊接,焊缝形状整齐,稳定性较好,沿焊缝厚度方向进行9MeV-ICT探伤,探伤结果显示焊缝平均气孔率为1%,无侧壁及层间未熔合、裂纹等焊接缺陷.
-
图 4 双相不锈钢周向摩擦焊接头微观组织
Figure 4. Microstructure of the duplex stainless steel joint produced by girth friction welding. (a) phase of weld zone; (b) phase of thermo-mechanically affected zone; (c) phase of base metal; (d) grain of weld zone; (e) grain of thermo-mechanically affected zone; (f) grain of base metal
图 10 自冲式摩擦铆接接头界面微观结构
Figure 10. Interface microstructure of friction self-piercing riveting joint. (a) joint longitudinal cross-section and the corresponding horizontal cross-section on the dotted line; (b) element analysis of the interface between rivet and its outside workpiece; (c) element analysis of the interface between rivet and its inside workpiece
图 14 低合金结构钢S355水下盲孔摩擦塞补焊接头的微观组织
Figure 14. Microstructure of the S355 steel joint produced by underwater blind hole friction plug welding. (a) macrostructure of the joint cross-section; (b) base metal (region A); (c) upper weld metal (region B); (d) lower weld metal (region C); (e) heat affected zone (region D)
-
[1] 赵熹华, 冯吉才. 压焊方法及设备[M]. 北京: 机械工业出版社, 2008. Zhao Xihua, Feng Jicai. Pressure welding methods and equipments[M]. Beijing: China Machine Press, 2008.
[2] Maalekian M. Friction welding-critical assessment of literature[J]. Science and Technology of Welding and Joining, 2007, 12(8): 738 − 759. doi: 10.1179/174329307X249333
[3] Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review[J]. Journal of Materials Science & Technology, 2018, 34(1): 1 − 38.
[4] Crossland B. Friction welding[J]. Contemporary Physics, 1971, 12(6): 559 − 574. doi: 10.1080/00107517108205660
[5] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir welding: UK Patent 9125978.8[P]. 1991-12-06.
[6] 刘小超, 甄云乾, 何欣沅, 等. 基于同质摩擦的涡流搅拌摩擦焊工艺[J]. 航空学报, 2022, 43(2): 117 − 125. Liu Xiaochao, Zhen Yunqian, He Xinyuan, et al. Vortex- friction stir welding process based on internal friction between identical materials[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(2): 117 − 125.
[7] 梁永亮, 秦国梁, 周军, 等. 径向摩擦焊技术研究与开发进展[J]. 焊接, 2011(12): 7 − 11. doi: 10.3969/j.issn.1001-1382.2011.12.002 Liang Yongliang, Qin Guoliang, Zhou Jun, et al. Research and development of radial friction welding technology[J]. Welding & Joining, 2011(12): 7 − 11. doi: 10.3969/j.issn.1001-1382.2011.12.002
[8] Della Rovere C A, Ribeiro C R, Silva R, et al. Microstructural and mechanical characterization of radial friction welded supermartensitic stainless steel joints[J]. Materials Science and Engineering: A, 2013, 586: 86 − 92. doi: 10.1016/j.msea.2013.08.014
[9] 秦国梁, 张春波, 周军, 等. 37CrMnMo 钢管径向摩擦焊接头组织与性能[J]. 焊接学报, 2012, 33(1): 21 − 24. Qin Guoliang, Zhang Chunbo, Zhou Jun, et al. Microstructure and properties of radial friction welded joint of 37CrMnMo steel pipe[J]. Transactions of the China Welding Institution, 2012, 33(1): 21 − 24.
[10] 陈大军, 李忠盛, 张隆平, 等. 10钢/35CrMnSi径向摩擦焊接头的力学性能及组织特征[J]. 精密成形工程, 2018, 10(2): 117-121. Chen Dajun, Li Zhongsheng, Zhang Longping, et al. Mechanical properties and microstructure characteristics of radial friction welding joint of 10 steel and 35CrMnSi[J]. Journal of Netshape Forming Engineering, 2018, 10(2): 117 − 121.
[11] 徐晓菱, 徐元泽, 吴玮. 小口径炮弹弹带摩擦焊技术[J]. 兵工学报, 2007, 28(3): 346 − 348. doi: 10.3321/j.issn:1000-1093.2007.03.021 Xu Xiaoling, Xu Yuanze, Wu Wei. Study on radial friction welding band of small shell[J]. Acta Armamentarii, 2007, 28(3): 346 − 348. doi: 10.3321/j.issn:1000-1093.2007.03.021
[12] Faes K, Dhooge A, De Baets P, et al. New friction welding process for pipeline girth welds−welding time optimization[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43(9): 982 − 992.
[13] Pissanti D R, Scheid A, Kanan L F, et al. Pipeline girth friction welding of the UNS S32205 duplex stainless steel[J]. Materials & Design, 2019, 162: 198 − 209.
[14] De Moraes C A P, Chludzinski M, Nunes R M, et al. Residual stress evaluation in API 5L X65 girth welded pipes joined by friction welding and gas tungsten arc welding[J]. Journal of Materials Research and Technology, 2019, 8(1): 988 − 995. doi: 10.1016/j.jmrt.2018.07.009
[15] Chludzinski M, Dos Santos Re, Pissanti D R, et al. Full-scale friction welding system for pipeline steels[J]. Journal of Materials Research and Technology, 2019, 8(2): 1773 − 1780. doi: 10.1016/j.jmrt.2018.12.007
[16] Amancio-Filho S T, Roeder J, Nunes S P, et al. Thermal degradation of polyetherimide joined by friction riveting (FricRiveting). Part I: Influence of rotation speed[J]. Polymer degradation and stability, 2008, 93(8): 1529 − 1538. doi: 10.1016/j.polymdegradstab.2008.05.019
[17] Szlosarek R, Karall T, Enzinger N, et al. Mechanical testing of flow drill screw joints between fibre-reinforced plastics and metals[J]. Materials Testing, 2013, 55(10): 737 − 742. doi: 10.3139/120.110495
[18] Gao D, Ersoy U, Stevenson R, et al. A new one-sided joining process for aluminum alloys: friction stir blind riveting[J]. Journal of Manufacturing Science and Engineering, 2009, 131(6): 061002. doi: 10.1115/1.4000311
[19] Lathabai S, Tyagi V, Ritchie D, et al. Friction stir blind riveting: a novel joining process for automotive light alloys[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1): 589 − 601. doi: 10.4271/2011-01-0477
[20] Min J, Li J, Li Y, et al. Friction stir blind riveting for aluminum alloy sheets[J]. Journal of Materials Processing Technology, 2015, 215: 20 − 29. doi: 10.1016/j.jmatprotec.2014.08.005
[21] Min J, Li Y, Li J, et al. Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 1403 − 1410. doi: 10.1007/s00170-014-6364-8
[22] Min J, Li J, Carlson B E, et al. Friction stir blind riveting for joining dissimilar cast Mg AM60 and Al alloy sheets[J]. Journal of Manufacturing Science and Engineering, 2015, 137(5): 051022. doi: 10.1115/1.4030156
[23] Hahn T B. Development of the friction element welding for the use in car body manufacturing[D]. Paderborn: University of Paderborn, 2010.
[24] Papadimitriou I, Efthymiadis P, Kotadia h R, et al. Joining TWIP to TWIP and TWIP to aluminium: A comparative study between joining processes, joint properties and mechanical performance[J]. Journal of Manufacturing Processes, 2017, 30: 195 − 207. doi: 10.1016/j.jmapro.2017.09.012
[25] Li Y, Wei Z, Wang Z, et al. Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B[J]. Journal of Manufacturing Science and Engineering, 2013, 135(6): 061007. doi: 10.1115/1.4025421
[26] 马运五. 自冲摩擦铆焊机械-固相复合连接机理及应用研究[D]. 上海: 上海交通大学, 2019. Ma Yunwu. Study on mechanism and application of mechanical solid-state hybrid joining of friction self-piercing riveting process[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[27] 张鹏, 赵升吨, 陈政, 等. 不等厚铝合金板材搅拌摩擦铆焊塑性连接机理研究[J]. 西安交通大学学报, 2021, 55(2): 84 − 92. Zhang Peng, Zhao Shengdun, Chen Zheng, et al. Plastic joining mechanism of friction stir rivet welding process for aluminum alloy sheets with non-uniform thickness[J]. Journal of Xi’an Jiaotong University, 2021, 55(2): 84 − 92.
[28] Wang G Q, Zhao Y H, Zhang L N, et al. A new weld repair technique for friction stir welded aluminium structure: inertia friction pull plug welding[J]. China Welding, 2017, 26(4): 56 − 64.
[29] Cui L, Yang X, Wang D, et al. Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties[J]. Materials Science and Engineering: A, 2014, 611: 15 − 28. doi: 10.1016/j.msea.2014.04.087
[30] Yan Y, Shen Y, Guo C, et al. Friction plug welding acrylonitrile butadiene styrene sheets: the investigation of welding process, joint morphology and mechanical property[J]. International Journal of Material Forming, 2019, 12(5): 845 − 855. doi: 10.1007/s12289-018-1456-x
[31] 张忠科, 赵早龙, 李德福, 等. 6082 铝合金摩擦塞补焊接头微观组织与性能[J]. 材料导报, 2020, 34(16): 16094 − 16099. doi: 10.11896/cldb.19080029 Zhang Zhongke, Zhao Zaolong, Li Defu, et al. Microstructure and mechanical properties of friction plug welding joint of 6082 aluminum alloy[J]. Materials Reports, 2020, 34(16): 16094 − 16099. doi: 10.11896/cldb.19080029
[32] Du B, Yang X, Liu K, et al. Effects of supporting plate hole and welding force on weld formation and mechanical property of friction plug joints for AA2219-T87 friction stir welds[J]. Welding in the World, 2019, 63(4): 989 − 1000. doi: 10.1007/s40194-019-00731-2
[33] 卢鹏, 崔雷, 王惠苗, 等. 2219 铝合金拉锻式摩擦塞补焊工艺研究[J]. 航空制造技术, 2019, 62(12): 55 − 64. Lu Peng, Cui Lei, Wang Huimiao, et al. Friction pull plug welding process of 2219 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2019, 62(12): 55 − 64.
[34] 王国庆, 赵衍华, 孔德跃, 等. LD10 铝合金熔焊接头缺陷的拉锻式摩擦塞补焊[J]. 焊接, 2010(6): 38 − 42. doi: 10.3969/j.issn.1001-1382.2010.06.009 Wang Guoqing, Zhao Yanhua, Kong Deyue, et al. Friction plug welding to repair fusion welded joint of LD10 Al alloy[J]. Welding & Joining, 2010(6): 38 − 42. doi: 10.3969/j.issn.1001-1382.2010.06.009
[35] 杜波, 杨新岐, 孙转平, 等. 2219-T87铝合金拉锻式摩擦塞补焊接头组织及性能[J]. 焊接学报, 2019, 40(2): 128 − 132. Du Bo, Yang Xinqi, Sun Zhuanping, et al. Microstructures and properties of 2219-T87 aluminum alloy friction pull plug welds[J]. Transactions of the China Welding Institution, 2019, 40(2): 128 − 132.
[36] Gao J, Yang L, Cui L, et al. Improving the weld formation and mechanical properties of the AA-5A06 friction pull plug welds by axial force control[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828 − 838. doi: 10.1007/s40195-020-01015-1
[37] Cui L, Lu P, Li W, et al. Influence of axial force parameters to the quality of friction pull plug welding for 2219-T87 aluminium alloy sheets[J]. Science and Technology of Welding and Joining, 2019, 24(1): 27 − 35. doi: 10.1080/13621718.2018.1474019
[38] 刘雪梅, 姚君山, 张彦华. 摩擦堆焊工艺参数的优化选择[J]. 焊接学报, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027 Liu Xuemei, Yao Junshan, Zhang Yanhua. Optimization for friction surfacing parameters[J]. Transactions of the China Welding Institution, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027
[39] Dunkerton S B, Thomas W M. Repair by friction welding[C]// Proceedings of the TWI Repair and Reclamation Conference. London, UK, 1984: 24 − 25.
[40] Yamashita Y, Fujita K. Newly developed repairs on welded area of LWR stainless steel by friction surfacing[J]. Journal of Nuclear Science and Technology, 2001, 38(10): 896 − 900. doi: 10.1080/18811248.2001.9715112
[41] Agiwal H, Yeom H, Sridharan K, et al. Low-force friction surfacing for crack repair in 304L stainless steel[C]//Friction Stir Welding and Processing XI. Springer International Publishing, 2021: 55 − 65.
[42] Damodaram R, Rai P, Daniel S C J, et al. Friction surfacing: A tool for surface crack repair[J]. Surface and Coatings Technology, 2021, 422: 127482. doi: 10.1016/j.surfcoat.2021.127482
[43] 张旭, 杨新岐, 崔雷, 等. 轴向压力对X65合金钢摩擦堆焊层组织和磨损性能的影响[J]. 中国表面工程, 2016, 29(6): 113 − 122. doi: 10.11933/j.issn.1007-9289.2016.06.016 Zhang Xu, Yang Xinqi, Cui Lei, et al. Axial pressure effects on microstructure and wear resistance during friction surfacing of X65 alloy steel[J]. China Surface Engineering, 2016, 29(6): 113 − 122. doi: 10.11933/j.issn.1007-9289.2016.06.016
[44] Esther I, Dinaharan I, Murugan N. Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti-6Al-4V alloy using friction surfacing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1263 − 1274. doi: 10.1016/S1003-6326(19)65033-8
[45] Rahmati Z, Aval H J, Nourouzi S, et al. Effect of mechtrode rotational speed on friction surfacing of AA2024 on AA1050 substrate[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 33: 209 − 221. doi: 10.1016/j.cirpj.2021.03.012
[46] Atil H B, Leonhardt M, Grant R J, et al. Microstructure and mechanical properties of aluminium alloy coatings on alumina applied by friction surfacing[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235(2): 366 − 384. doi: 10.1177/1464420720965614
[47] Guo D, Kwok C T, Chan S L I, et al. Friction surfacing of AISI 904L super austenitic stainless steel coatings: Microstructure and properties[J]. Surface and Coatings Technology, 2021, 408: 126811. doi: 10.1016/j.surfcoat.2020.126811
[48] Batchelor A W, Jana S, Koh C P, et al. The effect of metal type and multi-layering on friction surfacing[J]. Journal of Materials Processing Technology, 1996, 57(1-2): 172 − 181. doi: 10.1016/0924-0136(95)02057-8
[49] Vilaça P, Gandra J, Vidal C. Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling[C]//Aluminium Alloys-New Trends in Fabrication and Applications. Rijeka, Croatia, 2012: 159 − 197.
[50] Dilip J J S, Babu S, Rajan S V, et al. Use of friction surfacing for additive manufacturing[J]. Materials and Manufacturing Processes, 2013, 28(2): 189 − 194. doi: 10.1080/10426914.2012.677912
[51] Abdelall E S, Al-Dwairi A F, Al-Raba'a S M, et al. Printing functional metallic 3D parts using a hybrid friction-surfacing additive manufacturing process[J]. Progress in Additive Manufacturing, 2021, 6: 731 − 741.
[52] Khodabakhshi F, Gerlich A P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review[J]. Journal of Manufacturing Processes, 2018, 36: 77 − 92.
[53] Hang Z Y, Jones M E, Brady G W, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition[J]. Scripta Materialia, 2018, 153: 122 − 130. doi: 10.1016/j.scriptamat.2018.03.025
[54] Phillips B J, Avery D Z, Liu T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si[J]. Materialia, 2019, 7: 100387. doi: 10.1016/j.mtla.2019.100387
[55] Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: a comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386
[56] Agrawal P, Haridas R S, Yadav S, et al. Processing-structure- property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47: 102259. doi: 10.1016/j.addma.2021.102259
[57] Liu X C, Sun Y F, Morisada Y, et al. Dynamics of rotational flow in friction stir welding of aluminium alloys[J]. Journal of Materials Processing Technology, 2018, 252: 643 − 651. doi: 10.1016/j.jmatprotec.2017.10.033
[58] Liu X C, Zhen Y Q, Shen Z K, et al. A modified friction stir welding process based on vortex material flow[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 90. doi: 10.1186/s10033-020-00499-3
[59] Liu X C, Zhen Y Q, Chen H Y, et al. Study on process characteristics of friction stir welding based on vortex material flow using 6061-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 5025 − 5034. doi: 10.1007/s00170-022-08697-0
-
期刊类型引用(14)
1. 武震东,黄瑞生,曹浩,韩鹏薄,李林,魏鹏宇. 光束摆动对窄间隙激光横焊焊缝成形及气孔的影响. 焊接. 2025(01): 8-16 . 百度学术
2. 董兵天,安子良,陈昊睿,武鹏博,罗玖田,牛董山钰,曹浩. 厚壁钛合金激光填丝焊研究现状及发展趋势. 电焊机. 2025(02): 46-57+69 . 百度学术
3. 滕彬,范成磊,徐锴,武鹏博,聂鑫,黄瑞生. 厚板窄间隙焊接技术研究现状与应用进展. 焊接学报. 2024(01): 116-128+136 . 本站查看
4. 张帅,刘同争,徐志宏,代小光,朱朝晖,高明,郭少锋. 光束质量对铝合金激光焊接效率与良率的影响. 中国激光. 2024(12): 11-19 . 百度学术
5. 石端虎,吴三孩,历长云,赵洪枫,刚铁,何敏. 对接接头焊件缺陷空间定位及分布特征研究. 徐州工程学院学报(自然科学版). 2023(02): 55-62 . 百度学术
6. 韩鹏薄,黄瑞生,孙静涛,李小宇,曹浩. 窄间隙激光填丝焊工艺参数对高强钢焊缝成形及缺陷倾向的影响. 热加工工艺. 2023(21): 32-37+43 . 百度学术
7. 李路雨,胡永俊,李风,舒畅. 几种常见合金的激光扫描焊接特性及研究现状. 电焊机. 2022(02): 26-35 . 百度学术
8. 徐亦楠,马青军,武鹏博,黄瑞生,杨悦,方乃文. 浅析厚壁金属材料窄间隙激光填丝焊存在的问题. 金属加工(热加工). 2022(08): 42-48 . 百度学术
9. 陶武,杨上陆. 铝合金激光焊接技术应用现状与发展趋势. 金属加工(热加工). 2021(02): 1-4 . 百度学术
10. 徐楷昕,雷振,黄瑞生,方乃文,曹浩. 摆动工艺对钛合金窄间隙激光填丝焊缝成形及气孔率的影响. 中国激光. 2021(06): 143-151 . 百度学术
11. 吴雁,肖礼军,孙士学,唐德高. 激光在铝合金焊接中的应用研究进展. 热加工工艺. 2021(15): 1-5+11 . 百度学术
12. 黄瑞生,邹吉鹏,宫建锋,杨义成,梁晓梅. 激光扫描焊接熔池及等离子体动态行为. 焊接学报. 2020(03): 11-16+97 . 本站查看
13. 孙清洁,李军兆,刘一搏,甄祖阳,靳鹏,李富祥,侯少军,李振锋. 电磁场辅助SUS316L不锈钢扫描激光窄间隙焊接接头成形及组织性能. 中国激光. 2020(10): 73-82 . 百度学术
14. 王磊,许雪宗,王克鸿,黄勇,彭勇,杨东青. 中厚板7A52铝合金光纤激光焊接接头组织与性能. 焊接学报. 2020(10): 28-31+37+98-99 . 本站查看
其他类型引用(14)