Analysis and application of explosive welding window for dissimilar metals
-
摘要: 爆炸焊接窗口是获得良好结合质量的重要方法,计算的理论模型和参数选择对结果至关重要. 从爆炸焊接参数出发,通过分析爆炸焊接窗口边界公式的发展历程、理论假设和参数选择,总结得到方便使用的窗口计算公式. 将其应用到钛/铝焊接中,分析了钛与不同牌号铝合金的焊接方式,预测了不同装药比时焊接界面的质量. 结果表明,随着铝合金硬度的升高,可焊窗口逐渐减小. 当焊接参数位于窗口中部时,界面成小波状,结合质量好;焊接参数接近窗口上限时,界面成大波状,存在大量微观缺陷.焊接窗口是重要的研究手段,能够较好的指导生产实践.Abstract: Explosive welding window is an important method to obtain good bonding quality. The theoretical model and parameter selection of calculation are very important to the results. Starting from the parameters of explosive welding, by analyzing the development process, theoretical assumptions and parameter selection of the window boundary formula of explosive welding, a convenient window calculation formula is obtained. The formula is applied to titanium/aluminum welding, the welding methods of titanium and different grades of aluminum alloy are analyzed, and the quality of welding interface under different charge ratio is predicted. With the increase of aluminum alloy hardness, the welding window decreases gradually. When the welding parameters are located in the middle of the window, the interface is wavelet and the bonding quality is good; When the welding parameters are close to the upper limit of the window, the interface is large wave and there are a lot of micro defects. The results show that welding window is an important research means and can better guide production practice.
-
Keywords:
- explosive welding /
- welding window /
- parameter calculation
-
-
表 1 材料特性参数
Table 1 Material properties parameter
材料 抗拉强度
Rm/MPa硬度
H/MPa密度
ρ/(g·cm−3)熔点
Tm/℃声速
Cb/(m·s−1)热导率
k/(W·m−1·K−1)比热容
Cp/(J·kg−1·K−1)下限常数
k1TA2 441 140 4.51 1 660 6 000 15 550 — 1060 120 32 2.68 660 6 300 — — 1.14 5083 280 87 2.80 638 6 300 — — 1.00 7075 560 155 2.81 635 6 300 — — 0.85 -
[1] 王宇新, 李晓杰, 王小红, 等. 爆炸焊接技术及工程应用[J]. 航空制造技术, 2019, 62(12): 42 − 47. Wang Yuxin, Li Xiaojie, Wang Xiaohong, et al. Explosive welding technology and engineering application[J]. Aviation Manufacturing Technology, 2019, 62(12): 42 − 47.
[2] 田启超, 马宏昊, 沈兆武, 等. Al0.1CoCrFeNi高熵合金/TA2钛复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2021, 42(6): 22 − 29. Tian Qichao, Ma Honghao, Shen Zhaowu, et al. Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate[J]. Transactions of the China Welding Institution, 2021, 42(6): 22 − 29.
[3] 汪育, 史长根, 尤峻, 等. 双立式爆炸焊接R-δ型可焊性窗口[J]. 焊接学报, 2016, 37(1): 59 − 62,75. Wang Yu, Shi Changgen, You Jun, et al. Double vertical explosive welding R-δ type weldability window[J]. Transactions of the China Welding Institution, 2016, 37(1): 59 − 62,75.
[4] Lysak V, Kuzmin S. Lower boundary in metal explosive welding. Evolution of ideas[J]. Journal of Materials Processing Technology, 2012, 212(1): 150 − 156. doi: 10.1016/j.jmatprotec.2011.08.017
[5] Carpenter S, Wittman R. Explosion welding[J]. Annual Review of Materials Science, 1975, 5(1): 177 − 199. doi: 10.1146/annurev.ms.05.080175.001141
[6] Bahrani A, Crossland B. Some observations on explosive cladding welding[C]//Annual Conference AD, ASTME. 1966: 66-112.
[7] Deribas A A, Zakharenko I D. Surface effects with oblique collisions between metallic plates[J]. Combustion, Explosion and Shock Waves, 1974, 10(3): 358 − 367.
[8] Athar M H, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding[J]. Materials & Design, 2015, 86: 516 − 525.
[9] Mousavi S A, Sartangi P F. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.
[10] Zakharenko I, Zlobin B. Effect of the hardness of welded materials on the position of the lower limit of explosive welding[J]. Combust Explos Shock Waves (Engl Transl), 1983, 19(5): 689 − 692. doi: 10.1007/BF00750461
[11] Cowan G R, Bergmann O R, Holtzman A H. Mechanism of bond zone wave formation in explosion-clad metals[J]. Metallurgical and Materials Transactions B, 1971, 2(11): 3145 − 3155. doi: 10.1007/BF02814967
[12] Fu Y, Shi M. Mechanism of nonequilibrium formation of novel interface structures in explosive welding[J]. Journal of Materials Engineering and Performance, 2019, 28(6): 3341 − 3348. doi: 10.1007/s11665-019-04119-7
[13] Jaramillo D, Szecket A, Inal O. On the transition from a waveless to a wavy interface in explosive welding[J]. Materials Science and Engineering, 1987, 91: 217 − 222. doi: 10.1016/0025-5416(87)90300-4
[14] 曾翔宇, 李晓杰, 王小红, 等. 爆炸焊接波状界面的形成和发展[J]. 稀有金属材料与工程, 2020, 49(6): 1977 − 1983. Zeng Xiangyu, Li Xiaojie, Wang Xiaohong, et al. Formation and development of wavy interface in explosive welding[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1977 − 1983.
[15] Bataev I, Tanaka S, Zhou Q, et al. Towards better understanding of explosive welding by combination of numerical simulation and experimental study[J]. Materials & Design, 2019, 169: 107649.
[16] 王宇新, 李晓杰, 闫鸿浩, 等. 爆炸焊接CAE软件开发及工程应用[J]. 工程爆破, 2018, 24(1): 1 − 7,26. doi: 10.3969/j.issn.1006-7051.2018.01.001 Wang Yuxin, Li Xiaojie, Yan Honghao, et al. Development and engineering application of CAE software for explosive welding[J]. Engineering Blasting, 2018, 24(1): 1 − 7,26. doi: 10.3969/j.issn.1006-7051.2018.01.001
[17] Cowan G R, Holtzman A H. Flow configurations in colliding plates: explosive bonding[J]. Journal of Applied Physics, 1963, 34(4): 928 − 939. doi: 10.1063/1.1729565
[18] 史长根, 赵林升, 侯鸿宝, 等. 爆炸焊接最小作用量原理分析[J]. 焊接学报, 2014, 35(5): 88 − 90,117. Shi Changgen, Zhao Linsheng, Hou Hongbao, et al. Principle analysis of minimum action quantity of explosive welding[J]. Transactions of the China Welding Institution, 2014, 35(5): 88 − 90,117.
[19] 李晓杰, 王宇新, 王小红, 等. 双金属爆炸焊接参数设计理论[J]. 工程爆破, 2020, 26(5): 1 − 13. doi: 10.3969/j.issn.1006-7051.2020.05.001 Li Xiaojie, Wang Yuxin, Wang Xiaohong, et al. Parameter design theory of bimetal explosive welding[J]. Engineering Blasting, 2020, 26(5): 1 − 13. doi: 10.3969/j.issn.1006-7051.2020.05.001
[20] De Rosset W S. Analysis of explosive bonding parameters[J]. Materials and Manufacturing Processes, 2006, 21(6): 634 − 638. doi: 10.1080/10426910600611136
[21] Fang Z, Shi C, Shi H, et al. Influence of explosive ratio on morphological and structural properties of Ti/Al clads[J]. Metals, 2019, 9(2): 119. doi: 10.3390/met9020119
[22] 房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92. Fang Zhongxing, Shi Changgen, Feng Ke, et al. Explosive welding test and performance test of TA2-1060-TA2 composite plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
[23] 田晓东, 王小苗, 丁旭, 等. 钛/铝复合板爆炸焊接技术研究进展[J]. 钛工业进展, 2020, 37(6): 34 − 40. Tian Xiaodong, Wang Xiaomiao, Ding Xu, et al. Research progress of explosive welding technology of titanium / aluminum composite plate[J]. Progress of Titanium Industry, 2020, 37(6): 34 − 40.
[24] Mahmood Y, Dai K, Chen P, et al. Experimental and numerical study on microstructure and mechanical properties of Ti-6Al-4V/Al-1060 explosive welding[J]. Metals, 2019, 9(11): 1189.