高级检索

选区激光熔化制备多孔结构的成形偏差及力学性能与压缩失效分析

徐榕蔚, 张振杰, 刘清原, 张光辉, 龙芋宏

徐榕蔚, 张振杰, 刘清原, 张光辉, 龙芋宏. 选区激光熔化制备多孔结构的成形偏差及力学性能与压缩失效分析[J]. 焊接学报, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001
引用本文: 徐榕蔚, 张振杰, 刘清原, 张光辉, 龙芋宏. 选区激光熔化制备多孔结构的成形偏差及力学性能与压缩失效分析[J]. 焊接学报, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001
XU Rongwei, ZHANG Zhenjie, LIU Qingyuan, ZHANG Guanghui, LONG Yuhong. The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001
Citation: XU Rongwei, ZHANG Zhenjie, LIU Qingyuan, ZHANG Guanghui, LONG Yuhong. The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(10): 49-56. DOI: 10.12073/j.hjxb.20211005001

选区激光熔化制备多孔结构的成形偏差及力学性能与压缩失效分析

基金项目: 国家自然科学基金青年科学基金资助项目(62004050, 52165056);广西自然科学基金重点项目(2019JJD160010);广西研究生教育创新项目(2020YCXS010, 2021YCXS001);2020年全国大学生创新创业训练计划(No.202010595032).
详细信息
    作者简介:

    徐榕蔚,硕士;主要研究方向为金属增材制造与结构优化设计. Email: 974613097@qq.com

    通讯作者:

    龙芋宏,博士,教授,博士研究生导师;Email: longyuhong@guet.edu.cn

  • 中图分类号: TG495,TF124

The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed

  • 摘要: 因多孔结构轻质高强度、力学性能可调节的特点,被广泛用于骨骼医疗、航空航天等领域. 为了探索多孔结构选区激光熔化(Selective Laser Melting, SLM)成形误差与压缩失效性能,以钻石型晶格和六孔开口球形两种多孔结构为例,采用理论预测与试验测试研究SLM制造多孔结构的压缩力学行为,使用ANSYS软件对所研究的多孔结构进行准静态压缩模拟,并对SLM成形的多孔结构进行单轴压缩试验,最后结合仿真和试验,观测和分析它们的变形过程和失效机制. 对比后发现数值设计的多孔结构尺寸与最终制造的结构存在偏差,导致力学性能理论值与试验值存在一定差异,但应力应变场变化规律一致. 试验结果表明,在孔隙率50% ~ 80%时,钻石型晶格结构屈服强度为31.85 ~ 182.13 MPa,弹性模量为1.45 ~ 2.30 GPa;六孔开口球形结构屈服强度为35.19 ~ 130.64 MPa,弹性模量为1.59 ~ 2.90 GPa,不同多孔结构随孔隙率的增大,力学性能变化趋势不一致.
    Abstract: Due to the characteristics of light, high strength and adjustable mechanical properties of porous structure, it is widely used in bone medicine, aerospace and other fields. In order to explore the forming error and compression failure performance of porous structure with selective laser melting (SLM), this paper takes two kinds of porous structure with diamond lattice and spherical six-hole opening as examples to study the compressive mechanical behavior of porous structure manufactured by SLM by theoretical prediction and experimental test. ANSYS software was used to simulate the quasi-static compression of the studied porous structure, and the uniaxial compression experiment of the SLM formed porous structure was carried out. Finally, the deformation process and failure mechanism of the SLM formed porous structure were observed and analyzed combined with the simulation and experiment. After comparison, it is found that the size of the numerical design porous structure deviates from that of the final manufactured structure, resulting in a certain difference between the theoretical value of mechanical properties and the experimental value, but the variation law of stress and strain field is consistent. The experimental results show that when the porosity is 50% ~ 80%, the yield strength and elastic modulus of diamond lattice structure are 31.85 ~ 182.13 MPa and 1.45 ~ 2.30 GPa respectively. The yield strength and elastic modulus of six-hole spherical structure are 35.19 ~ 130.64 MPa and 1.59 ~ 2.90 GPa respectively. The mechanical properties of different porous structures vary with the increase of porosity.
  • 图  1   多孔胞元模型

    Figure  1.   Porous cell model. (a) diamond lattice; (b) spherical six-hole opening structure

    图  2   有限元分析模型

    Figure  2.   Finite element analysis model

    图  3   316L粉末形貌

    Figure  3.   Morphology of 316L powder

    图  4   SLM成形的多孔结构

    Figure  4.   Porous structure formed by SLM

    图  5   不同孔隙率钻石型晶格多孔件表面形貌

    Figure  5.   Surface morphology of diamond lattice porous parts with different porosity. (a) porosity 50%; (b) porosity 60%; (c) porosity 70%; (d) porosity 80%

    图  6   50% ~ 80%孔隙率钻石型晶格结构试验及模拟的应力—应变曲线

    Figure  6.   Experimental and simulated stress-strain curves of diamond lattice structure with 50% ~ 80% porosity. (a) porosity 50%; (b) porosity 60%; (c) porosity 70%; (d) porosity 80%

    图  7   50% ~ 80%孔隙率六孔开口球形多孔结构试验及模拟的应力—应变曲线

    Figure  7.   Experimental and simulated stress-strain curves of spherical porous structures with six-hole openings with 50% ~ 80% porosity. (a) porosity 50%; (b) porosity 60%; (c) porosity 70%; (d) porosity 80%

    图  8   孔隙率对多孔结构力学性能的影响

    Figure  8.   Effect of porosity on mechanical properties of porous structures. (a) change trend of yield strength-porosity; (b) change trend of modulus of elasticity-porosity

    图  9   多孔结构压缩变形过程

    Figure  9.   Compression deformation process of porous structure. (a) diamond lattice with 80% porosity; (b) spherical six-hole opening structure with 80% porosity

    图  10   压缩仿真(左)和试验(右)各阶段变形

    Figure  10.   Deformation at different stages of compression simulation (left) and experiment (right). (a) diamond lattice; (b) spherical six-hole opening structure

    表  1   多孔结构设计参数

    Table  1   Design parameters of porous structure

    孔隙率A(%)钻石型晶格-杆直径d/mm六孔开口球形-壁厚t/mm
    501.27060.7498
    601.09180.5001
    700.91060.3355
    800.71620.2070
    下载: 导出CSV

    表  2   316L粉末的化学成分(质量分数,%)

    Table  2   Chemical composition of 316L powder

    SiCrNiMnMoCSPFe
    0.6416.7911.070.682.530.0270.00560.022余量
    下载: 导出CSV

    表  3   钻石型晶格多孔试样实测参数与设计参数对比

    Table  3   Comparison between measured parameters and design parameters of diamond lattice porous sample

    孔隙率A(%)杆件直径d/mm误差∆d/mm相对误差B(%)
    理论值实际值
    501.2701.3110.0413.24
    601.0911.1660.0756.86
    700.9100.9760.0667.27
    800.7160.7890.07310.16
    下载: 导出CSV
  • [1]

    Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material[J]. International Journal of Solids and Structures, 2001, 38(40): 7181 − 7196.

    [2]

    Wadley H N G. Cellular metals manufacturing[J]. Advanced engineering materials, 2002, 4(10): 726 − 733. doi: 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y

    [3] 常帅. 不锈钢阵列结构选区激光熔化制备与电化学抛光技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Chang Shuai. Research on selective laser melting and electrochemical polishing of stainless steel array structures[D]. Harbin: Harbin Institute on Technology, 2019.

    [4] 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2): 157 − 169. doi: 10.6052/1000-0992-2010-2-J2008-152

    Zhang Qiancheng, Lu Tianjian, Wen Ting. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials[J]. Advances in Mechanics, 2010, 40(2): 157 − 169. doi: 10.6052/1000-0992-2010-2-J2008-152

    [5] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 41 − 67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095

    Wu Zhilin, Xiong Jian, Ma Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics, 2012, 42(1): 41 − 67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095

    [6]

    Chantarapanich N, Laohaprapanon A, Wisutmethangoon S, et al. Fabrication of three-dimensional honeycomb structure for aeronautical applications using selective laser melting: a preliminary investigation[J]. Rapid Prototyping Journal, 2014, 20(6): 551 − 558. doi: 10.1108/RPJ-08-2011-0086

    [7]

    Mullen L, Stamp R C, Fox P, et al. Selective laser melting: A unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2010, 92B(1): 178 − 188. doi: 10.1002/jbm.b.31504

    [8]

    Xiao Z, Yang Y, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Materials & design, 2018, 143: 27 − 37.

    [9] 郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3): 77 − 82. doi: 10.11868/j.issn.1005-5053.2017.000036

    Zheng Quan, Ji Bin, Li Hao, et al. Compressive behavior of sandwich panels with multilayer pyramidal truss cores by additive manufacturing[J]. Journal of Aeronautical Materials, 2018, 38(3): 77 − 82. doi: 10.11868/j.issn.1005-5053.2017.000036

    [10] 曾寿金, 吴启锐, 叶建华. 选区激光熔化成型316L不锈钢多孔结构的力学性能[J]. 红外与激光工程, 2020(8): 67 − 75.

    Zeng Shoujin, Wu Qirui, Ye Jianhua. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting[J]. Infrared and Laser Engineering, 2020(8): 67 − 75.

    [11]

    Shi C, Lu N, Qin Y, et al. Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V[J]. PLOS ONE, 2021, 16(3): e247764.

    [12]

    Hasan R. Progressive collapse of titanium alloy micro-lattice structures manufactured using selective laser melting[D]. UK: University of Liverpool, 2013.

    [13]

    Huo P, Zhao Z, Bai P, et al. Deformation evolution and fracture mechanism of porous TC4 alloy scaffolds fabricated using selective laser melting under uniaxial compression[J]. Journal of Alloys and Compounds, 2021, 861: 158529. doi: 10.1016/j.jallcom.2020.158529

    [14]

    Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. Journal of Materials Science and Technology, 2019(2): 303 − 308.

    [15]

    Feng Q, Tang Q, Liu Y, et al. Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2301 − 2313. doi: 10.1007/s00170-017-0932-7

    [16] 陈继民, 王颖, 曹玄扬, 等. 选区激光熔融技术制备多孔支架及其单元结构的拓扑优化[J]. 北京工业大学学报, 2017, 43(4): 489 − 495.

    Chen Jimin, Wang Ying, Cao Xuanyang, et al. Topology optimization of microstructure and selective laser melting manufacture for porous scaffolds[J]. Journal of Beijing University of Technology, 2017, 43(4): 489 − 495.

  • 期刊类型引用(3)

    1. 王政伦,刘永胜,李炜. SLM工艺参数及酸洗处理对TC4钛合金多孔结构影响研究. 钢铁钒钛. 2025(02): 53-60 . 百度学术
    2. 赵训茶,王文文,刘洁,汤超,刘鹏. 热处理改性对PTFE/PEEK多孔保持架材料摩擦学性能的影响研究. 塑料科技. 2025(04): 21-26 . 百度学术
    3. 杨林沂,许明三,叶建华,韦铁平. 选区激光熔化成形不同偏移率拱形点阵结构力学性能. 焊接学报. 2024(08): 95-102+109 . 本站查看

    其他类型引用(4)

图(10)  /  表(3)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  39
  • PDF下载量:  78
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-10-04
  • 网络出版日期:  2022-07-05
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回