The forming deviation, mechanical properties and compression failure of porous structures fabricated by laser melting were analyzed
-
摘要: 因多孔结构轻质高强度、力学性能可调节的特点,被广泛用于骨骼医疗、航空航天等领域. 为了探索多孔结构选区激光熔化(Selective Laser Melting, SLM)成形误差与压缩失效性能,以钻石型晶格和六孔开口球形两种多孔结构为例,采用理论预测与试验测试研究SLM制造多孔结构的压缩力学行为,使用ANSYS软件对所研究的多孔结构进行准静态压缩模拟,并对SLM成形的多孔结构进行单轴压缩试验,最后结合仿真和试验,观测和分析它们的变形过程和失效机制. 对比后发现数值设计的多孔结构尺寸与最终制造的结构存在偏差,导致力学性能理论值与试验值存在一定差异,但应力应变场变化规律一致. 试验结果表明,在孔隙率50% ~ 80%时,钻石型晶格结构屈服强度为31.85 ~ 182.13 MPa,弹性模量为1.45 ~ 2.30 GPa;六孔开口球形结构屈服强度为35.19 ~ 130.64 MPa,弹性模量为1.59 ~ 2.90 GPa,不同多孔结构随孔隙率的增大,力学性能变化趋势不一致.Abstract: Due to the characteristics of light, high strength and adjustable mechanical properties of porous structure, it is widely used in bone medicine, aerospace and other fields. In order to explore the forming error and compression failure performance of porous structure with selective laser melting (SLM), this paper takes two kinds of porous structure with diamond lattice and spherical six-hole opening as examples to study the compressive mechanical behavior of porous structure manufactured by SLM by theoretical prediction and experimental test. ANSYS software was used to simulate the quasi-static compression of the studied porous structure, and the uniaxial compression experiment of the SLM formed porous structure was carried out. Finally, the deformation process and failure mechanism of the SLM formed porous structure were observed and analyzed combined with the simulation and experiment. After comparison, it is found that the size of the numerical design porous structure deviates from that of the final manufactured structure, resulting in a certain difference between the theoretical value of mechanical properties and the experimental value, but the variation law of stress and strain field is consistent. The experimental results show that when the porosity is 50% ~ 80%, the yield strength and elastic modulus of diamond lattice structure are 31.85 ~ 182.13 MPa and 1.45 ~ 2.30 GPa respectively. The yield strength and elastic modulus of six-hole spherical structure are 35.19 ~ 130.64 MPa and 1.59 ~ 2.90 GPa respectively. The mechanical properties of different porous structures vary with the increase of porosity.
-
-
表 1 多孔结构设计参数
Table 1 Design parameters of porous structure
孔隙率A(%) 钻石型晶格-杆直径d/mm 六孔开口球形-壁厚t/mm 50 1.2706 0.7498 60 1.0918 0.5001 70 0.9106 0.3355 80 0.7162 0.2070 表 2 316L粉末的化学成分(质量分数,%)
Table 2 Chemical composition of 316L powder
Si Cr Ni Mn Mo C S P Fe 0.64 16.79 11.07 0.68 2.53 0.027 0.0056 0.022 余量 表 3 钻石型晶格多孔试样实测参数与设计参数对比
Table 3 Comparison between measured parameters and design parameters of diamond lattice porous sample
孔隙率A(%) 杆件直径d/mm 误差∆d/mm 相对误差B(%) 理论值 实际值 50 1.270 1.311 0.041 3.24 60 1.091 1.166 0.075 6.86 70 0.910 0.976 0.066 7.27 80 0.716 0.789 0.073 10.16 -
[1] Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material[J]. International Journal of Solids and Structures, 2001, 38(40): 7181 − 7196.
[2] Wadley H N G. Cellular metals manufacturing[J]. Advanced engineering materials, 2002, 4(10): 726 − 733. doi: 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y
[3] 常帅. 不锈钢阵列结构选区激光熔化制备与电化学抛光技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Chang Shuai. Research on selective laser melting and electrochemical polishing of stainless steel array structures[D]. Harbin: Harbin Institute on Technology, 2019.
[4] 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2): 157 − 169. doi: 10.6052/1000-0992-2010-2-J2008-152 Zhang Qiancheng, Lu Tianjian, Wen Ting. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials[J]. Advances in Mechanics, 2010, 40(2): 157 − 169. doi: 10.6052/1000-0992-2010-2-J2008-152
[5] 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 41 − 67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095 Wu Zhilin, Xiong Jian, Ma Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics, 2012, 42(1): 41 − 67. doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095
[6] Chantarapanich N, Laohaprapanon A, Wisutmethangoon S, et al. Fabrication of three-dimensional honeycomb structure for aeronautical applications using selective laser melting: a preliminary investigation[J]. Rapid Prototyping Journal, 2014, 20(6): 551 − 558. doi: 10.1108/RPJ-08-2011-0086
[7] Mullen L, Stamp R C, Fox P, et al. Selective laser melting: A unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2010, 92B(1): 178 − 188. doi: 10.1002/jbm.b.31504
[8] Xiao Z, Yang Y, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Materials & design, 2018, 143: 27 − 37.
[9] 郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3): 77 − 82. doi: 10.11868/j.issn.1005-5053.2017.000036 Zheng Quan, Ji Bin, Li Hao, et al. Compressive behavior of sandwich panels with multilayer pyramidal truss cores by additive manufacturing[J]. Journal of Aeronautical Materials, 2018, 38(3): 77 − 82. doi: 10.11868/j.issn.1005-5053.2017.000036
[10] 曾寿金, 吴启锐, 叶建华. 选区激光熔化成型316L不锈钢多孔结构的力学性能[J]. 红外与激光工程, 2020(8): 67 − 75. Zeng Shoujin, Wu Qirui, Ye Jianhua. Mechanical properties of 316L stainless steel porous structure formed by selective laser melting[J]. Infrared and Laser Engineering, 2020(8): 67 − 75.
[11] Shi C, Lu N, Qin Y, et al. Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V[J]. PLOS ONE, 2021, 16(3): e247764.
[12] Hasan R. Progressive collapse of titanium alloy micro-lattice structures manufactured using selective laser melting[D]. UK: University of Liverpool, 2013.
[13] Huo P, Zhao Z, Bai P, et al. Deformation evolution and fracture mechanism of porous TC4 alloy scaffolds fabricated using selective laser melting under uniaxial compression[J]. Journal of Alloys and Compounds, 2021, 861: 158529. doi: 10.1016/j.jallcom.2020.158529
[14] Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. Journal of Materials Science and Technology, 2019(2): 303 − 308.
[15] Feng Q, Tang Q, Liu Y, et al. Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2301 − 2313. doi: 10.1007/s00170-017-0932-7
[16] 陈继民, 王颖, 曹玄扬, 等. 选区激光熔融技术制备多孔支架及其单元结构的拓扑优化[J]. 北京工业大学学报, 2017, 43(4): 489 − 495. Chen Jimin, Wang Ying, Cao Xuanyang, et al. Topology optimization of microstructure and selective laser melting manufacture for porous scaffolds[J]. Journal of Beijing University of Technology, 2017, 43(4): 489 − 495.
-
期刊类型引用(3)
1. 王政伦,刘永胜,李炜. SLM工艺参数及酸洗处理对TC4钛合金多孔结构影响研究. 钢铁钒钛. 2025(02): 53-60 . 百度学术
2. 赵训茶,王文文,刘洁,汤超,刘鹏. 热处理改性对PTFE/PEEK多孔保持架材料摩擦学性能的影响研究. 塑料科技. 2025(04): 21-26 . 百度学术
3. 杨林沂,许明三,叶建华,韦铁平. 选区激光熔化成形不同偏移率拱形点阵结构力学性能. 焊接学报. 2024(08): 95-102+109 . 本站查看
其他类型引用(4)