Resistance spot weldability of nuclear ODS steel
-
摘要: 为评价氧化物弥散强化合金(oxide dispersion-strengthened alloy, ODS)钢的电阻点焊性能,使用金相显微镜及扫描电镜观察了9CrYWT-ODS钢焊点不同区域的组织,测试了焊点的拉伸剪切性能,确定了合适的焊接电流范围. 结果表明,焊点不同区域内氧化相尺寸存在明显差异,热影响区回火区温度较低,氧化相细小,热影响区相变区温度较高,氧化相有所长大,熔核区温度很高,氧化相明显粗化. 随着焊接电流增大,熔核尺寸增大导致焊点最大拉伸剪切力升高的同时,失效方式由界面失效逐渐转变为部分界面−部分焊点拔出失效及完全焊点拔出失效,继续增大焊接电流到飞溅产生时,熔核尺寸减小引起最大拉伸剪切力降低,失效方式再次转变为部分界面−部分焊点拔出失效和界面失效. 根据拉伸剪切试验结果确定合适的焊接电流范围为6.6 ~ 7.0 kA.
-
关键词:
- 电阻点焊 /
- 氧化物弥散强化合金钢 /
- 氧化相 /
- 拉剪性能 /
- 熔核尺寸
Abstract: For evaluating the resistance spot weldability of oxide dispersion-strengthened alloy (ODS) steel, the microstructure of different regions of 9CrYWT-ODS steel spot weld was observed by optical microscope and scanning electron microscope, and the tensile and shear properties of spot welds were tested. Finally, the appropriate welding current range was confirmed. Results show that the size of the oxides in different areas of the spot weld exhibits obvious differences. The tempered zone in the heat affected zone contains tiny, dispersed oxides due to the low temperature during welding process. The phase transformation zone in the heat affected zone contains less small oxides and more large oxides owing to the higher temperature. The very high temperature in the weld nugget zone results in obvious coarsening of the oxides. As the welding current increases, the increase of the nugget size leads to the increase of tensile and shear force, and the tensile shear failure mode gradually changes from the interfacial mode to the partial interfacial-partial pullout mode, and then further transformed into the fully pullout mode. Continuing to increase the current to the occurrence of splash, the decrease of the nugget size results in the decrease of tensile shear force. The failure mode again changes to the partial interfacial-partial pullout mode and interfacial mode. According to the tensile and shear test results, the appropriate welding current range is 6.6 ~ 7.0 kA.-
Keywords:
- resistance spot welding /
- ODS steel /
- oxide /
- tensile shear property /
- nugget diameter
-
-
表 1 9CrYWT-ODS钢的化学成分(质量分数, %)
Table 1 Chemical compositions of 9CrYWT-ODS steel
C Cr Y Ti W O Fe 0.10 9.10 0.20 0.31 1.45 0.12 余量 表 2 焊接电流、飞溅情况及拉剪失效方式
Table 2 Welding current, splash situation and tensile shear failure mode
试样编号 焊接电流I/kA 焊接情况 拉剪失效方式 1 7.4 飞溅 界面 2 7.2 飞溅 部分界面−部分焊点拔出 3 7.0 未飞溅 完全焊点拔出 4 6.8 未飞溅 完全焊点拔出 5 6.6 未飞溅 完全焊点拔出 6 6.4 未飞溅 部分界面−部分焊点拔出 7 6.0 未飞溅 部分界面−部分焊点拔出 8 5.6 未飞溅 部分界面−部分焊点拔出 9 5.4 未飞溅 部分界面−部分焊点拔出 10 5.2 未飞溅 界面 11 4.8 未飞溅 界面 12 4.4 未飞溅 界面 13 4.0 未飞溅 界面 14 3.8 未焊合 — -
[1] Hoffelner W. Damage assessment in structural metallic materials for advanced nuclear plants[J]. Journal of Materials Science, 2010, 45(9): 2247 − 2257. doi: 10.1007/s10853-010-4236-7
[2] 曹毅刚, 欧阳武. 第4代核能系统研究与发展计划[J]. 国际电力, 2005, 9(4): 36 − 40. Cao Yigang, Ouyang Wu. The generation IV nuclear energy research initiative[J]. International Electric Power for China, 2005, 9(4): 36 − 40.
[3] Marques J G. Evolution of nuclear fission reactors: Third generation and beyond[J]. Energy Conversion and Management, 2010, 51(9): 1774 − 1780.
[4] Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38(1): 471 − 503. doi: 10.1146/annurev.matsci.38.060407.130315
[5] Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels[J]. Journal of Nuclear Materials, 2012, 422(1-3): 45 − 50. doi: 10.1016/j.jnucmat.2011.12.011
[6] Dryepondt S, Turan J, Leonard D, et al. Long-term oxidation testing and lifetime modeling of cast and ODS FeCrAl alloys[J]. Oxidation of Metals, 2017, 87(1-2): 215 − 248. doi: 10.1007/s11085-016-9668-2
[7] Ukai S, Kaito T, Seki M, et al. Oxide dispersion strengthened (ODS) fuel pins fabrication for BOR-60 irradiation test[J]. Journal of Nuclear Science and Technology, 2005, 42(1): 109 − 122. doi: 10.1080/18811248.2005.9726370
[8] Norajitra P, Giniyatulin R, Ihli T, et al. He-cooled divertor development for DEMO[J]. Fusion Engineering and Design, 2007, 82(15-24): 2740 − 2744. doi: 10.1016/j.fusengdes.2007.05.027
[9] Molian P A, Yang Y M, Patnaik P C. Laser welding of oxide dispersion-strengthened alloy MA754[J]. Journal of Materials Science, 1992, 27(10): 2687 − 2694. doi: 10.1007/BF00540691
[10] 宇慧平, 杨柳, 韩长录, 等. 拉剪载荷下超高强度钢点焊残余应力试验[J]. 焊接学报, 2015, 36(8): 75 − 78. Yu Huiping, Yang Liu, Han Changlu, et al. Experimental study on welding residual stresses in ultrahigh strength sheet with tensile and shear load[J]. Transations of the China Welding Institution, 2015, 36(8): 75 − 78.
[11] 杨洪刚, 张延松, 来新民, 等. 热镀锌双相钢点焊结构的临界试样厚度[J]. 焊接学报, 2008, 29(1): 93 − 96. doi: 10.3321/j.issn:0253-360X.2008.01.023 Yang Honggang, Zhang Yansong, Lai Xinmin, et al. Critical specimen thickness of hot galvanized dual-phase steel spot welding[J]. Transations of the China Welding Institution, 2008, 29(1): 93 − 96. doi: 10.3321/j.issn:0253-360X.2008.01.023
[12] Seki M, Hirako K, Kono S, et al. Pressurized resistance welding technology development in 9Cr-ODS martensitic steels[J]. Journal of Nuclear Materials, 2004, 329-333: 1534 − 1538. doi: 10.1016/j.jnucmat.2004.04.172
[13] 魏世同, 陆善平. 热处理工艺对TRIP980钢板点焊性能的影响[J]. 焊接学报, 2017, 38(8): 111 − 114. doi: 10.12073/j.hjxb.20140825001 Wei Shitong, Lu Shanping. Effect of heat treatments on resistance spot weldability of TRIP980 steel[J]. Transations of the China Welding Institution, 2017, 38(8): 111 − 114. doi: 10.12073/j.hjxb.20140825001
[14] Zhang Changqing, Liu Xiao, Jin Xin, et al. Study on resistance spot weld brazing process and joint performance of pure aluminum 1060/galvanized steel[J]. China Welding, 2021, 30(1): 37 − 42.
-
期刊类型引用(2)
1. 刘浩东,戴京涛. 激光焊接技术的应用研究进展与分析. 电焊机. 2022(01): 95-102 . 百度学术
2. 张成,卢庆华,蔡遵武,张培磊. 高频微振辅助工艺对激光焊接接头组织性能的影响. 焊接学报. 2019(02): 86-90+165 . 本站查看
其他类型引用(4)