高级检索

N和O元素引入对GPCA-TIG焊焊缝冲击韧性的影响

黄勇, 郭卫, 王艳磊

黄勇, 郭卫, 王艳磊. N和O元素引入对GPCA-TIG焊焊缝冲击韧性的影响[J]. 焊接学报, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001
引用本文: 黄勇, 郭卫, 王艳磊. N和O元素引入对GPCA-TIG焊焊缝冲击韧性的影响[J]. 焊接学报, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001
HUANG Yong, GUO Wei, WANG Yanlei. Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001
Citation: HUANG Yong, GUO Wei, WANG Yanlei. Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 83-89. DOI: 10.12073/j.hjxb.20210919001

N和O元素引入对GPCA-TIG焊焊缝冲击韧性的影响

基金项目: 国家自然科学基金资助项目(51265029)
详细信息
    作者简介:

    黄勇,博士,教授;主要从事高效焊接方法及其理论、焊接物理与数值模拟、焊接EHS和功能材料连接方法及其理论等领域的研究;Email: hyorhot@lut.cn

  • 中图分类号: TG 401

Effects of introductions of oxygen and nitrogen elements on impact toughness of gas pool coupled activating TIG weld metal

  • 摘要: 通过外层气体引入O和N元素,气体熔池耦合活性TIG焊(gas pool coupled activating TIG welding)可以实现深熔深、高质量和连续焊接. 为了研究清楚O和N元素引入对焊缝冲击韧性的影响规律和机理,针对SUS304不锈钢分别测试了外层气体为O2,N2和O2 + N2时的焊缝低温冲击韧性,并从焊缝组织成分、析出物种类及形态以及晶粒取向等方面分析了其影响机理. 结果表明,外层气体引入对GPCA-TIG焊焊缝低温冲击韧性影响较大,单独引入O2时将明显降低,单独引入N2时降低较少,而同时引入O2和N2将增加焊缝金属低温冲击韧性. O和N元素同时引入增强GPCA-TIG焊缝金属低温冲击韧性的机理主要在于:焊缝组织较细,金属中的O和N元素含量和所形成的非金属夹杂物的增加程度和铁素体数量的下降程度都较少,却增加了奥氏体晶粒大角度晶界数量以及铁素体晶粒与奥氏体晶粒之间位向关系的匹配性,从而使得裂纹不易扩展,韧性增强.
    Abstract: Through introducing oxygen and nitrogen elements from the outer gas of gas pool coupled activating TIG(GPCA-TIG) welding, deep penetration, high quantity and continuous welding are accessible. In order to obtain the dependence and mechanism of weld metal impact toughness on the introduced oxygen and nitrogen elements, GPCA-TIG welding for stainless steel SUS304 with the outer gases oxygen, nitrogen and nitrogen-oxygen gas mixture respectively were performed to gauge low temperature impact toughness of the weld metal. Then, a series of testing experiments including weld microstructure and chemical composition, nonmetallic inclusion and grain orientation were conducted. The results reveal that, the introduction of oxygen makes the low temperature impact toughness of weld metal decease obviously, nitrogen decease a little, while the low temperature impact toughness of weld metal can be increased a little conversely when oxygen and nitrogen are synchronously introduced. The main mechanism is proven that the synchronous introduction of oxygen and nitrogen elements leads to fine grain of weld microstructure, less increases of the contents of oxygen and nitrogen elements and the nonmetallic inclusions, much decrease of ferrite number in weld metal. Meanwhile, the high angle grain boundary number in austenite crystal and the matching property of grain orientations between ferrite and austenite are improved. All of these result in difficult cracking propagation and higher toughness.
  • 图  1   GPCA-TIG焊方法示意图

    Figure  1.   Schematic of GPCA-TIG welding method

    图  2   TIG焊和GPCA-TIG焊焊缝微观组织

    Figure  2.   Weld microstructures of TIG welding and GPCA-TIG welding. (a) TIG welding; (b) GPCA-TIG welding (O2); (c) GPCA-TIG welding (N2); (d) GPCA-TIG welding (O2 + N2)

    图  3   焊缝金属中的非金属夹杂物

    Figure  3.   Nonmetallic inclusions in the weld metal. (a) granular carbide; (b) network carbide; (c) blocky carbide; (d) lath carbide; (e) granular oxide; (f) blocky nitride

    图  4   TIG焊和GPCA-TIG焊焊缝金属fcc晶粒取向差

    Figure  4.   FCC grain misorientation angles in weld metal of TIG welding and GPCA-TIG welding. (a) TIG welding; (b) GPCA-TIG welding (O2); (c) GPCA-TIG welding (N2); (d) GPCA-TIG welding (O2 + N2)

    图  5   TIG焊和GPCA-TIG焊的焊缝晶粒ODF图

    Figure  5.   Orientation distribution functions of TIG weld metal and GPCA-TIG weld metal grains. (a) TIG welding; (b) GPCA-TIG welding (O2); (c) GPCA-TIG welding (N2); (d) GPCA-TIG welding (O2 + N2)

    表  1   外层气体和耦合度对焊缝金属−40 ℃低温冲击吸收能量的影响

    Table  1   Effects of outer gas and coupling degree on low temperature impact toughness of the weld metal at −40 ℃

    金属耦合度h外层气体冲击吸收能量 Akv/J
    TIG焊焊缝36.67
    GPCA-TIG焊焊缝 + 2O231.33
    N234.33
    N2 + O240.00
    下载: 导出CSV

    表  2   焊缝组织晶粒度

    Table  2   Grain size grades of weld metals

    TIG焊GPCA-TIG焊
    (O2)
    GPCA-TIG焊
    (N2)
    GPCA-TIG焊
    (O2 + N2)
    6.7157.0307.2737.314
    下载: 导出CSV

    表  3   外层气体对焊缝中主要元素含量的影响(质量分数,%)

    Table  3   Effects of outer gas on the main element contents in the weld metal

    焊接方法FeCrNiNO
    TIG焊69.317.87.50.0390.001 7
    GPCA-TIG焊(O2)73.116.86.950.0570.010 0
    GPCA-TIG焊(N2)70.517.27.20.0720.004 5
    GPCA-TIG焊(O2 + N2)70.017.17.20.0560.005 8
    下载: 导出CSV

    表  4   外层气体对焊缝铁素体数(FN)的影响

    Table  4   Effect of outer gas on the ferrite number (FN) in the weld metal

    TIG焊GPCA-TIG焊
    (O2)
    GPCA-TIG焊
    (N2)
    GPCA-TIG焊
    (O2 + N2)
    6.856.486.056.73
    下载: 导出CSV

    表  5   外层气体对fcc晶界角分布的影响

    Table  5   Effect of outer gas on distribution of fcc grain boundary angle θ

    晶界角TIG焊GPCA-TIG焊 (O2)GPCA-TIG焊 (N2)GPCA-TIG焊 (O2 + N2)
    >15°81%73%74%83%
    <15°19%27%26%17%
    下载: 导出CSV
  • [1] 黄勇, 刘瑞琳, 樊丁, 等. 气体熔池耦合活性TIG焊方法[J]. 焊接学报, 2012, 33(9): 13 − 16.

    Huang Yong, Liu Ruilin, Fan Ding, et al. Gas pool coupled activating TIG welding method[J]. Transactions of the China Welding Institution, 2012, 33(9): 13 − 16.

    [2]

    Terashima S, Bhadeshia H K D H. Changes in toughness at low oxygen concentrations in steel weld metals[J]. Science and Technology of Welding and Joining, 2006, 11(5): 509 − 516. doi: 10.1179/174329306X113299

    [3]

    Zeng L, Fan C L, Zhu M, et al. Optimization of shielding gas composition in high nitrogen stainless steel gas metal arc welding[J]. Journal of Manufacturing Processes, 2020, 58(22): 19 − 29.

    [4]

    Enjo T, Kikuchi Y, Moroi H. Influence of nitrogen on the structure and low temperature impact properties of 304 type austenitic stainless steel weld metals by SMAW process[J]. Transactions of JWRI, 1986, 15(1): 77 − 84.

    [5]

    Bonnefois B, Coudreuse L, Charles J. A-TIG welding of high nitrogen alloyed stainless steels: A metallurgically high-performance welding process[J]. Welding International, 2004, 18(3): 208 − 212. doi: 10.1533/wint.2004.3226

    [6] 樊丁, 刘自刚, 黄勇, 等. 电弧辅助活性TIG 焊焊缝组织及性能分析[J]. 焊接学报, 2014, 35(4): 1 − 5.

    Fan Ding, Liu Zigang, Huang Yong, et al. Structure and properties of arc assisted activating TIG welding[J]. Transactions of the China Welding Institution, 2014, 35(4): 1 − 5.

    [7]

    Du Toit M, Pistorius P C. The influence of oxygen on the nitrogen content of autogenous stainless steel arc welds[J]. Welding Journal, 2007, 86(8): 222 − 230.

    [8]

    Huang Y, Ren C, Ren Q L. The element transfer behavior of gas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.

    [9] 方乃文, 黄瑞生, 闫德俊, 等. 低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J]. 焊接学报, 2021, 42(1): 70 − 75. doi: 10.12073/j.hjxb.20200502001

    Fang Naiwen, Huang Ruisheng, Yan Dejun, et al. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. Transactions of the China Welding Institution, 2021, 42(1): 70 − 75. doi: 10.12073/j.hjxb.20200502001

    [10]

    Karlsson L, Arcini H, Bergquist E L, et al. Effects of alloying concepts on ferrite morphology and toughness of lean duplex stainless steel weld metals[J]. Welding in the World, 2010, 54(11-12): R350 − R359. doi: 10.1007/BF03266749

    [11]

    Kamiya O, Kumagai K, Kikuchi Y. Effects of delta ferrite morphology on low-temperature fracture toughness of austenitic stainless steel weld metal[J]. Welding International, 1992, 6(8): 606 − 611. doi: 10.1080/09507119209548250

  • 期刊类型引用(1)

    1. 丁业立,牛红伟,刘多,刘积厚,雷玉珍. K9玻璃与2507不锈钢的真空钎焊. 焊接. 2019(01): 1-4+11+65 . 百度学术

    其他类型引用(1)

图(5)  /  表(5)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  44
  • PDF下载量:  36
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-09-18
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2022-05-12

目录

    /

    返回文章
    返回