高级检索

空心钨极同轴填丝焊接丝弧交互作用机制

杨义成, 杜兵, 黄继华, 黄瑞生, 陈健, 徐富家

杨义成, 杜兵, 黄继华, 黄瑞生, 陈健, 徐富家. 空心钨极同轴填丝焊接丝弧交互作用机制[J]. 焊接学报, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
引用本文: 杨义成, 杜兵, 黄继华, 黄瑞生, 陈健, 徐富家. 空心钨极同轴填丝焊接丝弧交互作用机制[J]. 焊接学报, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001
Citation: YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001

空心钨极同轴填丝焊接丝弧交互作用机制

基金项目: 黑龙江省重点研发计划指导类项目(GZ20210186); 哈尔滨焊接研究院有限公司重点基金项目(202116102).
详细信息
    作者简介:

    杨义成,博士研究生,工程师;主要从事激光焊接和激光增材制造相关研究工作;Email: hwiyyc@163.com

    通讯作者:

    杜兵,博士,研究员;Email:edwarddb@163.com.

  • 中图分类号: TG 465

Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire

  • 摘要: 空心钨极同轴填丝焊接焊丝与电弧(丝-弧)交互过程是决定焊接质量的关键.首先利用高速摄像观察分析了空心钨极电弧与实心钨极电弧形态,及其对焊缝成形特征的影响规律,然后构建了熔丝过程受力模型,系统分析了同轴填丝焊接过程中熔滴形成及过渡过程动力学特征.结果表明,空心钨极电弧表面辐照区域大于实心钨极,在大电流工艺条件下焊缝成形稳定;熔滴形成阶段,焊丝末端熔滴处于静力平衡状态,在较大表面张力作用下,无法自发从焊丝末端直接过渡进入熔池;熔滴过渡阶段,部分电流从焊丝流过,产生电磁收缩力,引起焊丝与熔池之间的熔滴摆动.
    Abstract: The interaction between welding wire and arc (wire-arc) is the key factor to determine the welding quality of hollow tungsten arc welding. Firstly, the shape of hollow tungsten electrode arc and solid tungsten electrode arc, and their influence on the weld forming characteristics are observed and analyzed by high-speed camera. Then the stress model of fuse process is constructed, the dynamic characteristics of droplet formation and transition process in coaxial wire filling welding are systematically analyzed. The research results show that the surface irradiation area of hollow tungsten electrode is larger than that of solid tungsten electrode, and the weld formation is stable under the high welding current. At the stage of droplet formation, the droplet at the end of the welding wire is in static equilibrium, and it cannot spontaneously transition from the end of the welding wire to the molten pool under the action of large surface tension. In droplet transition stage, part of the welding current flows through the welding wire, producing electromagnetic shrinkage force, causing the droplet swing between the welding wire and the molten pool.
  • 近年来铝及铝合金在航空航天领域得到广泛应用[1-3]. 氩弧焊由于其焊后接头质量好、工艺稳定性强、焊接可达性好,广泛用于焊接易氧化、化学性质活泼的铝合金[4-5]. 而在实际应用中,由于铝合金焊接过程中工件表面氧化膜受到阻热作用,严重影响铝合金焊接效率. 利用铝合金氩弧焊交流反接时的“阴极雾化”作用虽然可以保证焊接质量,但是铝合金氩弧焊反接时钨电极烧损严重,并且电弧产热主要集中在阳极,这导致电弧能量的利用效率降低,从而降低了熔深. 通过电源正负半波比例的优化也不能完全消除这一局限,而氦弧焊不仅出现了氧化膜撕裂的现象,使氧化膜破碎、汽化,同时还增加了阳极热功率[6],为彻底突破这一限制提供了可能性. 文中以实际焊接过程中热量传输效率为切入点,阐明了氦弧焊特有氧化膜撕裂现象的产生机理,分析了气体流量对氧化膜撕裂程度及电弧能量利用效率的影响,建立了熔池液面微分方程,为铝合金非熔化极直流正接氦弧焊的推广奠定了理论基础.

    试验选用的5083铝合金板材规格为720 mm × 190 mm × 12 mm,母材的化学成分如表1所示.

    表  1  母材化学成分及含量(质量分数,%)
    Table  1.  Chemical composition of base metal
    MgMnCrCuZnFeAl
    4.0 ~ 4.90.4 ~ 1.00.05 ~ 0.250 ~ 0.10 ~ 0.250 ~ 0.4余量
    下载: 导出CSV 
    | 显示表格

    试验采用直流正接的极性接法进行平板堆焊,同时通过CP80-3-M-540高速相机观察焊接过程中的电弧形态及熔池氧化膜撕裂过程,相机的频率设定为1 000 Hz,拍摄熔池氧化膜撕裂时加装808 nm波长滤光片以滤除弧光,并搭配808 nm的激光背景光源,保护气体为99.995%的纯氦气,焊接工艺试验主要参数如表2所示.

    表  2  试验主要工艺参数
    Table  2.  Processing parameters of experiment
    焊接速度v/(mm·min−1)钨针直径
    d/mm
    气体流量
    Q/(L·min−1)
    针尖到工件
    距离S/mm
    焊接电流
    I/A
    3003.010 ~ 203180
    下载: 导出CSV 
    | 显示表格

    与氩弧形貌不同的是氦弧的形貌呈倒扣碗状,这是由于氦原子分子量较小,更容易受电弧粒子热运动的干扰. 试验过程中得到的电弧及熔池氧化膜撕裂分别如图1图2所示. 高速摄影观测到铝合金氧化膜首先在熔池前端中心尖角撕裂,然后整个熔池表面氧化膜被缓慢推向熔池边缘,直至氧化膜堆叠至达到新的平衡状态并出现新的尖角撕裂,如此在整个焊接过程中循环往复,且随着气体流量的增加,氧化膜撕裂程度减小.

    图  1  不同气体流量下氦弧形态
    Figure  1.  Arc morphology under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  2  不同氦气流量下氧化膜撕裂情况展示
    Figure  2.  Oxide film tearing under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min

    氦弧焊氧化膜撕裂现象降低了电弧与熔池之间的热阻,假设电弧周围达到了局部热力学平衡状态以简化讨论. 氦弧至熔池的热阻$\mathop R\nolimits_{{\rm{int}}}$包括氧化膜热阻以及弧液界面两部分,氧化膜热阻${R_{{\rm{oxi}}}}$由辐射热阻$\mathop R\nolimits_{{\rm{oxi}}}^{{\rm{rad}}}$和传导热阻$R_{{\rm{oxi}}}^ {\rm{c}}$共同确定. 影响氧化膜热阻的因素较多,主要包括氧化膜的类别、特性和厚度、界面冷却速率等,且由于研究条件和方法不尽相同,所得的结论也略有差异[7-8]. 对于最终的电弧能量利用效率,选用单位时间内用来熔化被焊金属的有效热量与设备输出功率之比来表征,即

    $$ E_{{\rm{f}}} = \frac{{c\Delta T\displaystyle\iint\limits_\varOmega {v{\rm{d}}x{\rm{d}}y}}}{{UI}} $$ (1)

    式中:Ω为焊缝闭合轮廓线;$ v $为焊接速度;c为材料热容; ΔT为材料熔点与环境温度的差值;U为电弧电压.

    焊缝横截面结果如图3所示,利用Image-Pro Plus软件对焊缝横截面外轮廓进行特征提取并代入式(1)进一步计算,测量及计算结果如图4所示,其中相对能量效率于20 L/min时最大.

    图  3  不同气流量下焊缝横截面形貌
    Figure  3.  Weld morphology of cross section under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  4  氦弧焊焊缝横截面测量结果
    Figure  4.  Measuring results of the weld

    熔池深度、深宽比、电弧能量效率均随气体流量增加而增大. 氦弧与熔池间强制对流换热系数Nux会随着气流速度增大而增大,故随着气体流量增加氧化膜撕裂程度虽然减小,电弧相对能量利用效率却提高.

    $$ N{u_{{x}}} = 0.338\,\,7{{\mathop{R}\nolimits} _{\rm{e}}}^{1/2}{{\mathop{P}\nolimits} _{\rm{r}}}^{1/3}\bigg/{\left[ {1 - {{\left( {\frac{{0.046\,\,8}}{{{{\mathop{\rm P}\nolimits} _{\rm{r}}}}}} \right)}^{2/3}}} \right]^{1/4}} $$ (2)

    式中:普朗克数Pr对于气体约等于1;雷诺数Re会随着气流速度增大而增大.

    能够影响电弧的基本作用力有电弧压力$ P $、电弧剪切力$ \tau $、电磁力T、表面张力$ \sigma $、重力G、浮力N、气体压力$ f $[9-10],此处电弧压力是等离子体在工件表面被俘的粘滞压力,与气体压力相区别. 氦弧焊阳极区热功率比氩弧焊提高了一倍[1],电弧温度尤其是阳极区温度对比氩弧有极大提高. 从公式(3)可知,对于剪切力,氦弧为牛顿流体,则氦气的动力粘度 $ \mu $ 随温度升高而增加,故而在相同电流及气体流量情况下电弧剪切力比氩弧明显提升. 此外随着气体流量增加导致强制对流换热系数增大,熔池整体温度提高,熔池中心指向熔池边缘的表面张力随着电弧温度由边缘向中心的升高而下降,因此熔池中心的氧化膜化学键结合强度较低,更容易被撕裂. 也就是说,由熔池中心向熔池边缘会形成由易到难的不同程度的氧化膜撕裂,导致氧化膜破碎,最终在电弧高温下不断汽化.

    $$ \tau {\text{ = }}\mu \frac{{\partial v}}{{\partial y}}{|_{y = 0}} $$ (3)

    无脉冲直流正接氦弧焊熔池震荡并不明显,对于液面的确定文中主要采用静力学平衡方程. 对于氦弧焊熔池液面的确定,取液面与垂直面的交线,令液面与水平方向夹角为$ \alpha $,电弧粒子速度与水平方向夹角$ \alpha ' $,则对于液面与垂直面的交线有静力学平衡方程,即

    $$ \left\{ \begin{gathered} {{N}}\cos \alpha + \sigma \sin \alpha + P\cos \alpha + f\cos \alpha ' - T\sin \alpha = 0 \hfill \\ N\cos \alpha + \sigma \cos \alpha + P\sin \alpha + f\sin \alpha ' - T\cos \alpha = 0 \hfill \\ \end{gathered} \right. $$ (4)

    Mendez等人[11]用数量级缩放法对TIG电弧等离子体速度及电弧压强分布函数做了定量刻画,有

    $$ \left\{ \begin{array}{l} {Z_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.058}{\left( {h/{R_{\rm{c}}}} \right)^{0.34}}{{\hat Z}_{\rm{S}}}\\ {V_{\rm{RS}}} = 0.88{R_{\rm{e}}}^{ - 0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.086}}{{\hat V}_{{\rm{RS}}}}\\ {V_{{\rm{ZS}}}} = 0.88{R_{\rm{e}}}^{0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.008\,\,6}}{{\hat V}_{{\rm{RS}}}}\\ {P_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.017}{\left( {h/{R_{\rm{c}}}} \right)^{ - 0.057}}{{\hat V}_{{\rm{RS}}}} \end{array} \right. $$ (5)

    $$ \left\{ \begin{array}{l} {{\hat Z}_{\rm{S}}} = \dfrac{1}{2}{R_{\rm{c}}}\\ {{\hat V}_{{\rm{RS}}}} = {{\hat V}_{{\rm{ZS}}}} = \dfrac{1}{2}\dfrac{{{\mu _0}^{1/2}{R_{\rm{C}}}^2{J_{\rm{C}}}^2}}{{{\rho ^{1/2}}}}\\ {{\hat P}_{\rm{S}}} = \dfrac{1}{2}{\mu _0}{R_{\rm{C}}}^2{J_{\rm{C}}}^2 \end{array} \right. $$ (6)

    式中:$ {\mu _0} $为保护气体的真空磁导率;${R_{\rm{C}}}$为钨针端头直径;${J_{\rm{C}}}$为钨针端头电流密度;h为熔池液面下凹高度. ${Z_{\rm{S}}}$为钨针轴坐标修正值;${\hat Z_{\rm{S}}} $为钨针轴坐标理论估计值;${V_{{\rm{RS}}}}$为电弧等离子体径向速度修正值;${{\hat V}_{{\rm{RS}}}}$为电弧等离子体径向速度理论估计值;$V_{\rm{ZS}} $为电弧等离子体轴向速度修正值;${{\hat V}_{{\rm{ZS}}}} $为电弧等离子体轴向速度理论估计值;PS为压强. 又单位面积内$f = 2/3 n\overline E$$ \overline E $为粒子平均动能. 电弧气氛与大气联通,粒子密度近似为定值,代入联立式(4)~式(6),可得熔池液面与垂直面交线微分方程为

    $$ \frac{{{\rm{d}}y}}{{{\rm{d}}x}} = {{R_{\rm{e}}} ^{0.198}}{(h/{R_{\rm{c}}})^{ - 0.154}} $$ (7)

    从公式(7)可知,在距离熔池中心相同距离处,气体流量的增加导致雷诺数${R_{\rm{e}}}$的增加,要使熔池达到新的平衡,只能使h降低,即熔池液面继续下凹取得更大斜率. 也就是说,液面随气体流量增大下凹程度增加,氧化膜撕裂程度随气体流量增加而减小.

    有研究[12]发现氧化物在熔池表面电弧高温情况下存在解离现象,熔池液面表面张力温度系数实际为正. 气体流量增加增大了电弧与熔池之间强制对流换热系数,在熔池中心温度升高,由熔池边缘指向熔池中心的表面张力增强,导致氧化膜的撕裂程度的减小.

    (1) 氦弧焊阳极热功率的增加削弱了氧化膜之间化学键强度,相对于氩弧焊提高了动力粘度进而增大了电弧剪切力,产生了氧化膜撕裂现象.

    (2) 在试验参数范围内随着气体流量增加氧化膜撕裂程度减小,但焊缝深宽比以及电弧能量效率提高.

    (3) 熔池液面下凹程度增大及熔池中心至边缘表面张力减小,使得氧化膜撕裂程度随氦气流量增加而减弱.

  • 图  1   空心钨极同轴填丝焊接过程示意图

    Figure  1.   Schematic diagram of hollow tungsten arc welding with coaxial filler wire

    图  2   空心钨极电弧和实心钨极电弧对比

    Figure  2.   Difference between hollow tungsten arc and solid tungsten arc. (a) solid tungsten arc; (b) hollow tungsten arc

    图  3   实心钨极(400 A)和空心钨极(400 A)焊缝横截面

    Figure  3.   Weld cross section of solid tungsten electrode (400 A) and hollow tungsten electrode (400 A). (a) solid tungsten electrode; (b) hollow tungsten electrode

    图  4   熔滴形成阶段丝弧交互作用

    Figure  4.   Welding wire-arc interaction during droplet formation. (a) t0 + 0 ms; (b) t0 + 6.25 ms; (c) t0 + 12.75 ms; (d) t0 + 19.25 ms; (e) t0 + 35.5 ms; (f) t0 + 87.5 ms; (g) t0 + 105 ms; (h) t0 + 175 ms; (i) t0 + 280.75 ms

    图  5   熔滴过渡阶段丝弧交互作用

    Figure  5.   Welding wire-arc interaction during droplet transformation. (a) t0 + 280.75 ms; (b) t0 + 281.25 ms; (c) t0 + 283.5 ms; (d) t0 + 285.5 ms; (e) t0 + 288.25 ms; (f) t0 + 289.5 ms

    图  6   熔滴形成及熔滴过渡阶段受力分析

    Figure  6.   Stress analysis of droplet formation and transition stage. (a) droplet formation stage; (b) droplet transition stage

    图  7   空心钨极同轴填丝焊缝形貌

    Figure  7.   Weld appearance of hollow cathode arc welding with coaxial filler wire

  • [1] 冷雪松, 张广军, 吴林. 双钨极氩弧焊耦合电弧压力分析[J]. 焊接学报, 2006, 27(9): 13 − 16. doi: 10.3321/j.issn:0253-360X.2006.09.004

    Leng Xuesong, Zhang Guangjun, Wu Lin. Analysis of twin-electrode TIG coupled arc pressure[J]. Transactions of the China Welding Institution, 2006, 27(9): 13 − 16. doi: 10.3321/j.issn:0253-360X.2006.09.004

    [2] 周灿丰, 焦向东, 薛龙, 等. 以空气为舱内加压气体的钨极氩弧焊接[J]. 焊接学报, 2007, 28(2): 5 − 8. doi: 10.3321/j.issn:0253-360X.2007.02.002

    Zhou Canfeng, Jiao Xiangdong, Xue Long, et al. Gas tungsten arc welding using air as chamber gas[J]. Transactions of the China Welding Institution, 2007, 28(2): 5 − 8. doi: 10.3321/j.issn:0253-360X.2007.02.002

    [3] 张晨曙, 李水涛, 晏建武, 等. 铸造高温合金精铸零部件的补焊研究进展[J]. 材料导报, 2012, 26(12): 104 − 106. doi: 10.3969/j.issn.1005-023X.2012.23.022

    Zhang Chengshu, Li Shuitao, Yan Jianwu, et al. Research progress on repairing-welding for superalloy parts in precision casting[J]. Materials Reports, 2012, 26(12): 104 − 106. doi: 10.3969/j.issn.1005-023X.2012.23.022

    [4]

    Pea N R, Vazquez L, Arruti E, et al. Wire and arc additive manufacturing: a comparison between CMT and Top-TIG processes applied to stainless steel[J]. Welding in the World, 2018, 62: 1 − 4. doi: 10.1007/s40194-017-0515-0

    [5]

    Wu D, Huang J, Kong L, et al. Coupled mechanisms of arc, weld pool and weld microstructures in high speed tandem TIG welding[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119641. doi: 10.1016/j.ijheatmasstransfer.2020.119641

    [6]

    Cheng Z, Liu H, Huang J, et al. MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals[J]. Journal of Manufacturing Processes, 2020, 55: 208 − 219. doi: 10.1016/j.jmapro.2020.04.013

    [7]

    Rose S, Mahrle A, Schnick M, et al. Plasma welding with a superimposed coaxial fiber laser beam[J]. Welding in the World, 2013, 57(6): 857 − 865. doi: 10.1007/s40194-013-0079-6

    [8]

    Mahrle A, Rose S, Schnick M, et al. Improvements of the welding performance of plasma arcs by a superimposed fibre laser beam[J]. Proceedings of Spie the International Society for Optical Engineering, 2012, 8239: 82390D.

    [9]

    Liu S, Liu Z, Zhao X, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027

    [10] 李京洋, 李伟, 焦向东, 等. 304不锈钢激光K-TIG复合焊接电弧特性的研究[J]. 电焊机, 2020, 50(4): 30 − 35.

    Li Jingyang, Li Wei, Jiao Xiangdong, et al. Study on arc electrproperties of laser K-TIG hybrid welding of 304 stainless steel[J]. Electric Welding Machine, 2020, 50(4): 30 − 35.

    [11]

    Spaniol E, Ungethüm T, Trautmann M, et al. Development of a novel TIG hot-wire process for wire and arc additive manufacturing[J]. Welding in the World, 2020, 64(8): 1329 − 1340.

    [12] 杨义成, 陈健, 黄瑞生, 等. 空心钨极焊接关键技术问题及发展现状[J]. 焊接, 2021(5): 1 − 8.

    Yang Yicheng, Chen Jian, Huang Ruisheng, et al. Key technical problem and development status of hollow tungsten arc welding[J]. Welding & Joining, 2021(5): 1 − 8.

    [13] 杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    Yang Yicheng, Huang Ruisheng, Sun Qian et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    [14] 杨义成. 燃气轮机叶片激光增材修复基础研究[D]. 北京: 机械科学研究总院, 2017.

    Yang Yicheng. Basic research of repairing of gas turbine blade by laser additive manufacturing technology[D]. Beijing: China Academy of Machinery Science and Technology Group Limited Company, 2017.

    [15] 朱胜, 杜文博. 电弧增材再制造技术研究进展[J]. 电焊机, 2020, 50(9): 251 − 255. doi: 10.7512/j.issn.1001-2303.2020.09.28

    Zhu Sheng, Du Wenbo. State-of-art of wire arc additive remanufacturing technology[J]. Electric Welding Machine, 2020, 50(9): 251 − 255. doi: 10.7512/j.issn.1001-2303.2020.09.28

    [16]

    Parvaresh B, Miresmaeili R, Yazdizadeh M. Characterization of wire arc additive manufactured products: A comparison between as-deposited and inter-layer cold worked specimens[J]. Journal of Manufacturing Processes, 2020, 57: 61 − 71.

    [17] 魏仕勇, 彭文屹, 陈斌, 等. 等离子弧粉末堆焊熔覆材料的研究现状与进展[J]. 材料导报, 2020, 34(9): 9143 − 9151. doi: 10.11896/cldb.18120076

    Wei Shiyong, Peng Wenyi, Chen Bin, et al. Current statusand progress of cladding materials for plasma arc powder surfacing[J]. Materials Reports, 2020, 34(9): 9143 − 9151. doi: 10.11896/cldb.18120076

    [18] 胡庆贤, 唐峰, 王晓丽, 等. 一种气-磁联合调控空心钨极TOPTIG焊焊接方法: CN109365958A [P]. 2019-02-22.

    Hu Qingxian, Tang Feng, Wang Xiaoli, et al. A gas-magnetic combine control hollow tungsten electrode TOPTIG welding method: CN109365958A [P]. 2019-02-22.

    [19]

    Chen S, Yan Z, Jiang F, et al. The pressure distribution of hollow cathode centered negative pressure arc[J]. Journal of Manufacturing Processes, 2016, 23: 21 − 28. doi: 10.1016/j.jmapro.2016.05.016

    [20] 陈树君, 王建新, 蒋凡, 等. 空心钨极中心负压电弧基础特性研究[J]. 机械工程学报, 2016, 52(2): 7 − 12.

    Chen Shujun, Wang Jianxin, Jiang Fan, et al. Research of hollowtungsten central negative pressure arc welding characteristic[J]. Journal of Mechanical Engineering, 2016, 52(2): 7 − 12.

    [21] 杨义成, 杜兵, 黄继华, 等. 空心钨极同轴填丝焊空间热场分布特征[J]. 焊接学报, 2022, 43(3): 63 − 67.

    Yang Yicheng, Du Bing, Huang Jihua, et al. Spatial thermal field distrbution characteristics of hollow tungsten arc welding with coaxial filler wire[J]. Transactions of the China Welding Institution, 2022, 43(3): 63 − 67.

    [22] 雷正, 朱宗涛, 李远星, 等. 空心钨极TIG焊电弧特性数值模拟[J]. 焊接学报, 2021, 42(9): 9 − 14.

    Lei Zheng, Zhu Zongtao Li Yuanxing, et al. Numerical simulation of TIG arc characteristics of hollow tungsten electrode[J]. Transactions of the China Welding Institution, 2021, 42(9): 9 − 14.

    [23] 陈树君, 盛珊, 蒋凡, 等. 空心钨极中心负压电弧的物理性能[J]. 焊接学报, 2017, 38(12): 1 − 4.

    Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of hollow tungsten central negative pressure arc[J]. Transactions of the China Welding Institution, 2017, 38(12): 1 − 4.

    [24]

    Tashiro S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface and Coatings Technology, 2007, 201(9-11): 5431 − 5434. doi: 10.1016/j.surfcoat.2006.07.158

    [25]

    Nerovnyi V M, Khakhalev A D. Hollow cathode arc discharge as an effective energy source for welding processes in vacuum[J]. Journal of Physics D:Applied Physics, 2008, 41(3): 035201. doi: 10.1088/0022-3727/41/3/035201

    [26] 王树保, 张海宽, 冷雪松, 等. 双钨极氩弧焊工艺及焊缝成形机理分析[J]. 焊接学报, 2007, 28(2): 21 − 24. doi: 10.3321/j.issn:0253-360X.2007.02.006

    Wang Shubao, Zhang Haikuan, Leng Xuesong, et al. Twin-electrode tig welding procedure and mechanism of weld formation[J]. Transactions of the China Welding Institution, 2007, 28(2): 21 − 24. doi: 10.3321/j.issn:0253-360X.2007.02.006

图(7)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  62
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2022-04-10
  • 刊出日期:  2022-04-24

目录

/

返回文章
返回