Research on reliability of CCGA reinforcement process for aerospace electronic products
-
摘要: 航天电子产品大量应用陶瓷柱栅阵列封装(ceramic column grid array, CCGA)器件,其装焊质量与器件本体尺寸和加固工艺息息相关.文中通过试验和数值仿真方法,研究印制电路板(primted circurt board, PCB)约束、器件加固工艺对大尺寸CCGA焊点可靠性的影响. 仿真与试验结果表明,优化CCGA周围印制电路板约束方式、使用EC-2216环氧胶加固CCGA均可大幅降低随机振动过程中焊点受力. 使用少量环氧胶加固CCGA提高焊点抗振性能的同时,对焊点抗热疲劳性能影响较小,满足QJ 3086A—2016高可靠装焊要求;随着环氧胶点胶量的增多,焊点抗热疲劳性能显著下降,焊点在温差变化较大的服役环境下存在失效风险;在充分优化PCB约束以降低板级振动响应的情况下,使用GD414硅橡胶加固器件也满足航天电子产品高可靠装配要求.
-
关键词:
- 陶瓷柱栅阵列封装器件 /
- 机械应力 /
- 热疲劳失效 /
- 可靠性
Abstract: Ceramic column grid array packaging device (CCGA) are widely used in aerospace electronic products. The assembly and welding quality of CCGA is closely related to the device size and reinforcement process. This paper studied the effects of primted circurt board (PCB) constraints and CCGA reinforcement process on solder joint reliability by experiment and numerical simulation. The results show that optimized PCB restraint and using EC-2216 epoxy adhesive to strengthen CCGA can significantly reduce solder joint stress during random vibration. After reliability tests, using a small amount of EC-2216 epoxy adhesive to strengthen CCGA meets the reliability requirements of QJ 3086A—2016, the vibration resistance of solder joint is improved, and it has little influence on the thermal fatigue resistance. With the increase of epoxy adhesive amount, the thermal fatigue resistance of solder joints decrease significantly, and the high failure risk of solder joints exists in the service environment with large temperature difference. Under the condition of fully optimizing PCB board level constraints, using GD414 silicone rubber to reinforce the CCGA meets the high reliability assembly requirements of aerospace electronics. The above results provide reference for the reinforcement process of CCGA. -
-
表 1 随机振动试验条件
Table 1 Random vibration test conditions
频率
f/Hz功率谱密度M 总均方根加速度
a(Grms)dB/oct g2/Hz 20 ~ 60 + 3 60 ~ 1 000 0.27 20 1 000 ~ 2 000 − 6 表 2 CCGA样件的分配
Table 2 Distribution of the CCGA samples
约束状态 器件点胶状态 振动样件编号 温度循环样件编号 A ① 2 1 B ② 4 3 ③ 6 5 ④ 7 7 表 3 各材料主要参数
Table 3 Main parameters of materials
材料(常温) 密度
ρ/(g·cm−3)热膨胀系数
γ/(10−6℃−1)弹性模量
E/GPaFR-4(PCB) 2.6 15 ~ 17 20 CCGA陶瓷 3.5 6.5 400 9010焊柱 8.3 24 13 ~ 15 EC-2216环氧 2.1 60 ~ 70 18 ~ 20 -
[1] 赵智力, 孙凤莲, 王丽凤, 等. 低应力柔性CCGA焊点设计及其可靠性预测[J]. 焊接学报, 2012, 33(1): 53 − 56. Zhao Zhili, Sun Fenglian, Wang Lifeng, et al. Design of lower stress and flexible CCGA solder joints and reliability expectancy[J]. Transactions of the China Welding Institution, 2012, 33(1): 53 − 56.
[2] 吕强, 尤明懿, 陈贺贤, 等. CCGA封装特性及其在航天产品中的应用[J]. 电子工艺技术, 2014, 35(4): 222 − 226. Lü Qiang, You Mingyi, Chen Hexian, et al. CCGA package characteristic and its application for space products[J]. Electronics Process Technology, 2014, 35(4): 222 − 226.
[3] 王海超, 丁颖洁, 栾时勋, 等. 陶瓷柱栅阵列封装芯片落焊控温工艺研究[J]. 宇航材料工艺, 2020, 21(5): 9 − 15. Wang Haichao, Ding Yingjie, Luan Shixun, et al. Board-soldering temperature control process of CCGA packages after printed circuit board assembling for space applications[J]. Aerospace Materials & Tehnology, 2020, 21(5): 9 − 15.
[4] Reza Ghaffarian. CCGA packages for space application[J]. Microelectronics Reliability, 2006, 46: 2006 − 2024. doi: 10.1016/j.microrel.2006.07.094
[5] Andy Perkins, Sitaraman S K. Thermo-mechanical failure comparison and evaluation of CCGA and CBGA electronic packages[C]// Electronic Components and Technology Conference. Seattle, Washington, USA, 2003: 422 − 430.
[6] 苏德志, 赵丹, 王岑. 温度试验条件下柱栅阵列仿真失效分析[J]. 微电子学, 2020, 50(1): 65 − 71. Su Dezhi, Zhao Dan, Wang Cen. Failure analysis of column grid array under temperature test[J]. Microelectronics, 2020, 50(1): 65 − 71.
[7] Ying Dong, Tian Ruyu, Wang Xiuli, et al. Coupling effects of mechanical vibration and thermal cycling ong reliability of CCGA solder joints[J]. Microelectronics Reliability, 2015, 55(11): 2396 − 2402. doi: 10.1016/j.microrel.2015.06.118
[8] Park Tae-Yong, Jeon Su-Hyeon, Kim Su-Jeong. Experimental validation of fatigue life of CCGA 624 package with initial contace pressure of thermal gap pads under random vibration excitation[J]. International Journal of Aerospace Engineering, 2018, 3: 1 − 12.
[9] Perkins A, Sitaraman S K. Analysis and prediction of vibration-induces solder joint failure for a ceramic column grid array package[J]. Journal of Electronic Packaging, 2008, 130(3): 1 − 11.
[10] 夏卓杰, 张亮, 熊明月, 等. 有限元数值模拟在BGA/QFP/CCGA器件焊点可靠性研究中的应用[J]. 电子与封装, 2020, 20(2): 1 − 7. Xia Zhuojie, Zhang Liang, Xiong Mingyue, et al. Application of finite element numerical simulation in the reliability study of lead free solder joints in BGA/QFP/CCGA devices[J]. Electronics & Packaging, 2020, 20(2): 1 − 7.
[11] 张莉. 焊锡钎料温度和应变率相关拉伸性能的本构描述[D]. 天津: 天津大学, 2004. Zhang Li. Constitutive description of temperature and strain rate dependent tensile behaviors of solder[D]. Tianjin: Tianjin University, 2004.
-
期刊类型引用(2)
1. 吴鑫,李强,齐铂金. Snake模型和遗传算法在特殊焊缝提取中的应用. 焊接学报. 2018(09): 83-89+132 . 本站查看
2. 汤彬,王学武,薛立卡,顾幸生. 双焊接机器人避障路径规划. 华东理工大学学报(自然科学版). 2017(03): 417-424 . 百度学术
其他类型引用(10)