高级检索

航天电子产品CCGA加固工艺可靠性分析

王海超, 彭小伟, 郭帆, 丁颖洁, 陈强

王海超, 彭小伟, 郭帆, 丁颖洁, 陈强. 航天电子产品CCGA加固工艺可靠性分析[J]. 焊接学报, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001
引用本文: 王海超, 彭小伟, 郭帆, 丁颖洁, 陈强. 航天电子产品CCGA加固工艺可靠性分析[J]. 焊接学报, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001
WANG Haichao, PENG Xiaowei, GUO Fan, DING Yingjie, CHEN Qiang. Research on reliability of CCGA reinforcement process for aerospace electronic products[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001
Citation: WANG Haichao, PENG Xiaowei, GUO Fan, DING Yingjie, CHEN Qiang. Research on reliability of CCGA reinforcement process for aerospace electronic products[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 102-107. DOI: 10.12073/j.hjxb.20210907001

航天电子产品CCGA加固工艺可靠性分析

详细信息
    作者简介:

    王海超,硕士;主要研究方向为失效分析和模拟仿真;Email: 1152268387@qq.com

  • 中图分类号: TG 454;TG 407

Research on reliability of CCGA reinforcement process for aerospace electronic products

  • 摘要: 航天电子产品大量应用陶瓷柱栅阵列封装(ceramic column grid array, CCGA)器件,其装焊质量与器件本体尺寸和加固工艺息息相关.文中通过试验和数值仿真方法,研究印制电路板(primted circurt board, PCB)约束、器件加固工艺对大尺寸CCGA焊点可靠性的影响. 仿真与试验结果表明,优化CCGA周围印制电路板约束方式、使用EC-2216环氧胶加固CCGA均可大幅降低随机振动过程中焊点受力. 使用少量环氧胶加固CCGA提高焊点抗振性能的同时,对焊点抗热疲劳性能影响较小,满足QJ 3086A—2016高可靠装焊要求;随着环氧胶点胶量的增多,焊点抗热疲劳性能显著下降,焊点在温差变化较大的服役环境下存在失效风险;在充分优化PCB约束以降低板级振动响应的情况下,使用GD414硅橡胶加固器件也满足航天电子产品高可靠装配要求.
    Abstract: Ceramic column grid array packaging device (CCGA) are widely used in aerospace electronic products. The assembly and welding quality of CCGA is closely related to the device size and reinforcement process. This paper studied the effects of primted circurt board (PCB) constraints and CCGA reinforcement process on solder joint reliability by experiment and numerical simulation. The results show that optimized PCB restraint and using EC-2216 epoxy adhesive to strengthen CCGA can significantly reduce solder joint stress during random vibration. After reliability tests, using a small amount of EC-2216 epoxy adhesive to strengthen CCGA meets the reliability requirements of QJ 3086A—2016, the vibration resistance of solder joint is improved, and it has little influence on the thermal fatigue resistance. With the increase of epoxy adhesive amount, the thermal fatigue resistance of solder joints decrease significantly, and the high failure risk of solder joints exists in the service environment with large temperature difference. Under the condition of fully optimizing PCB board level constraints, using GD414 silicone rubber to reinforce the CCGA meets the high reliability assembly requirements of aerospace electronics. The above results provide reference for the reinforcement process of CCGA.
  • 图  1   CCGA点胶加固示意图

    Figure  1.   Schematic diagram of CCGA reinforcement

    图  2   振动试验中印制电路板约束状态(mm)

    Figure  2.   PCB constraint condition during the vibration test

    图  3   仿真模型

    Figure  3.   Simulation model

    图  4   2号、4号、6号和7号样件振动后焊点情况

    Figure  4.   Solder joints of No.2, No.4, No.6, No.7 sample after vibration experiment

    图  5   各模型z向瞬时变形曲线和测量点实测PSD曲线

    Figure  5.   Transient deformation simulation results and experimental PSD curves. (a) instantaneous deformation curves of direction z; (b) measured PSD curve of RM1; (c) measured PSD curve of RM2

    图  6   各模型随机振动RMIS仿真结果

    Figure  6.   RMIS simulation results of various random vibration model. (a) RMIS curve of simulation models; (b) RMIS distribution cloud map of RM1; (c) RMIS distribution cloud map of RM2; (d) RMIS distribution cloud map of RM3

    图  7   1号、3号、5号和7号样件温度循环后焊点形貌

    Figure  7.   Solder joints of No.1 , No.3 , No. 5, No.7 sample after temperature-cycle experiment

    图  8   各样件CCGA热循环高温和低温热应力分布云图

    Figure  8.   Thermal stress distribution of CCGA solder joints at high temperature and low temperature. (a) No.1 sample; (b) No.3 sample; (c) No.5 sample

    表  1   随机振动试验条件

    Table  1   Random vibration test conditions

    频率
    f/Hz
    功率谱密度M总均方根加速度
    a(Grms)
    dB/octg2/Hz
    20 ~ 60 + 3
    60 ~ 1 000 0.27 20
    1 000 ~ 2 000 − 6
    下载: 导出CSV

    表  2   CCGA样件的分配

    Table  2   Distribution of the CCGA samples

    约束状态器件点胶状态振动样件编号温度循环样件编号
    A 2 1
    B 4 3
    6 5
    7 7
    下载: 导出CSV

    表  3   各材料主要参数

    Table  3   Main parameters of materials

    材料(常温)密度
    ρ/(g·cm−3)
    热膨胀系数
    γ/(10−6−1)
    弹性模量
    E/GPa
    FR-4(PCB)2.615 ~ 1720
    CCGA陶瓷3.56.5400
    9010焊柱8.32413 ~ 15
    EC-2216环氧2.160 ~ 7018 ~ 20
    下载: 导出CSV
  • [1] 赵智力, 孙凤莲, 王丽凤, 等. 低应力柔性CCGA焊点设计及其可靠性预测[J]. 焊接学报, 2012, 33(1): 53 − 56.

    Zhao Zhili, Sun Fenglian, Wang Lifeng, et al. Design of lower stress and flexible CCGA solder joints and reliability expectancy[J]. Transactions of the China Welding Institution, 2012, 33(1): 53 − 56.

    [2] 吕强, 尤明懿, 陈贺贤, 等. CCGA封装特性及其在航天产品中的应用[J]. 电子工艺技术, 2014, 35(4): 222 − 226.

    Lü Qiang, You Mingyi, Chen Hexian, et al. CCGA package characteristic and its application for space products[J]. Electronics Process Technology, 2014, 35(4): 222 − 226.

    [3] 王海超, 丁颖洁, 栾时勋, 等. 陶瓷柱栅阵列封装芯片落焊控温工艺研究[J]. 宇航材料工艺, 2020, 21(5): 9 − 15.

    Wang Haichao, Ding Yingjie, Luan Shixun, et al. Board-soldering temperature control process of CCGA packages after printed circuit board assembling for space applications[J]. Aerospace Materials & Tehnology, 2020, 21(5): 9 − 15.

    [4]

    Reza Ghaffarian. CCGA packages for space application[J]. Microelectronics Reliability, 2006, 46: 2006 − 2024. doi: 10.1016/j.microrel.2006.07.094

    [5]

    Andy Perkins, Sitaraman S K. Thermo-mechanical failure comparison and evaluation of CCGA and CBGA electronic packages[C]// Electronic Components and Technology Conference. Seattle, Washington, USA, 2003: 422 − 430.

    [6] 苏德志, 赵丹, 王岑. 温度试验条件下柱栅阵列仿真失效分析[J]. 微电子学, 2020, 50(1): 65 − 71.

    Su Dezhi, Zhao Dan, Wang Cen. Failure analysis of column grid array under temperature test[J]. Microelectronics, 2020, 50(1): 65 − 71.

    [7]

    Ying Dong, Tian Ruyu, Wang Xiuli, et al. Coupling effects of mechanical vibration and thermal cycling ong reliability of CCGA solder joints[J]. Microelectronics Reliability, 2015, 55(11): 2396 − 2402. doi: 10.1016/j.microrel.2015.06.118

    [8]

    Park Tae-Yong, Jeon Su-Hyeon, Kim Su-Jeong. Experimental validation of fatigue life of CCGA 624 package with initial contace pressure of thermal gap pads under random vibration excitation[J]. International Journal of Aerospace Engineering, 2018, 3: 1 − 12.

    [9]

    Perkins A, Sitaraman S K. Analysis and prediction of vibration-induces solder joint failure for a ceramic column grid array package[J]. Journal of Electronic Packaging, 2008, 130(3): 1 − 11.

    [10] 夏卓杰, 张亮, 熊明月, 等. 有限元数值模拟在BGA/QFP/CCGA器件焊点可靠性研究中的应用[J]. 电子与封装, 2020, 20(2): 1 − 7.

    Xia Zhuojie, Zhang Liang, Xiong Mingyue, et al. Application of finite element numerical simulation in the reliability study of lead free solder joints in BGA/QFP/CCGA devices[J]. Electronics & Packaging, 2020, 20(2): 1 − 7.

    [11] 张莉. 焊锡钎料温度和应变率相关拉伸性能的本构描述[D]. 天津: 天津大学, 2004.

    Zhang Li. Constitutive description of temperature and strain rate dependent tensile behaviors of solder[D]. Tianjin: Tianjin University, 2004.

  • 期刊类型引用(2)

    1. 吴鑫,李强,齐铂金. Snake模型和遗传算法在特殊焊缝提取中的应用. 焊接学报. 2018(09): 83-89+132 . 本站查看
    2. 汤彬,王学武,薛立卡,顾幸生. 双焊接机器人避障路径规划. 华东理工大学学报(自然科学版). 2017(03): 417-424 . 百度学术

    其他类型引用(10)

图(8)  /  表(3)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  134
  • PDF下载量:  82
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-09-06
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回