Effects of surface layer microstructure on liquation crack and fatigue properties of 6005A aluminum alloy MIG joints
-
摘要: 采用扫描电镜、透射电镜、电子背散射衍射和高周疲劳试验,研究了表层组织状态对轨道交通用6005A铝合金MIG焊接头液化裂纹及疲劳性能的影响. 结果表明,粗晶组织晶界附近第二相粗大,导致热影响区晶界液膜厚度达到8 ~ 10 μm,使得液化晶界抵抗拉应力的能力降低,从而对液化裂纹缺陷更敏感. 因表层粗晶组织形成的液化裂纹成为疲劳过程中可能的裂纹源,对接头疲劳性能产生不利影响. 改善母材表层粗晶组织可以抑制液化裂纹的形成,提高接头疲劳性能. 在1 × 107循环周次下,表层粗晶接头疲劳强度为93 MPa,表层细晶接头疲劳强度为107 MPa.Abstract: The effects of surface microstructure on liquation cracks and fatigue properties of 6005A aluminum alloy MIG joints used in high-speed train bodies were comparatively studied. The results showed that the second phase near the grain boundary of the coarse-grained microstructure was coarse, resulting in larger thickness of the grain boundary liquid film in the heat-affected zone reaching 8~10 μm, which made the liquefied grain boundary less resistant to tensile stress and more sensitive to liquation cracks. The liquation cracks formed by the surface coarse-grained microstructure become possible crack sources during the fatigue process, which adversely affect the fatigue properties of the joints. Improving the surface microstructure of the base metal could suppress the formation of liquation cracks and improve the fatigue performance of the joint. The fatigue strength of the surface coarse-grained joint was 93 MPa under 1 ×107 cycles, while that of the surface fine-grained joint was 107 MPa.
-
0. 序言
铝合金具有比强度高、塑性好等优点,广泛用于轨道列车、高铁车体中的轻质承载结构,在轨道交通轻量化中发挥重要作用[1-3]. 同时由于铝合金具有比热容大、热导率高、热膨胀系数大等物理特性,在焊接过程容易产生液化裂纹缺陷[4-6]. 液化裂纹通常尺寸较小、难以发现,但在服役过程中可能发展成为裂纹源,严重影响焊接结构的性能和安全[7]. 6005A铝合金为Al-Mg-Si系可热处理强化铝合金,由于具有较好的挤压性和延展性,是大型铝型材的主要选材之一,轨道交道领域多采用6005A铝合金型材作为车体组焊构件[8-9]. 多位学者对6005A铝合金焊接裂纹敏感性以及接头疲劳性能进行了研究. 张健等人[10]通过热塑性试验证实6005A铝合金具有较高的热裂纹敏感性. 刘敬萱等人[11]研究了6005A-T6铝合金搅拌摩擦焊接头疲劳裂纹的萌生、扩展机制,结果显示疲劳裂纹均在试样表面萌生. Liu等人[12]研究6005A铝合金CMT焊接头的疲劳损伤机理,发现通过CMT电弧搅拌细化焊缝组织可以改善接头疲劳性能.
由于铝型材挤压工艺的局限性和材料本身的特性,铝型材表层存在晶粒异常粗大的粗晶组织[13]. 申澎洋等人[14]的研究表明晶界析出物是造成铝合金粗晶组织和细晶组织腐蚀性能差异的主要原因. 张大鹏等人[15]研究发现粗晶组织会降低铝合金挤压棒材的力学性能. 刘聪等人[16]研究发现小角度晶界对铝合金焊接裂纹的扩展有阻碍作用. 组织不均匀性对铝合金加工特性的影响已受到学者关注,而关于母材表层组织状态对6005A铝合金MIG焊接头液化裂纹及疲劳性能的影响研究较少,并且接头疲劳性能对表面缺陷非常敏感. 当前国内轨道交通铝合金车身焊接以多层多道MIG焊为主,焊缝经过多次加热,焊接液化裂纹问题更为突出.
文中对保留表层粗晶组织和铣除表层粗晶组织的6005A铝合金进行多层多道MIG焊接,对比研究了母材表层组织状态对6005A铝合金多层多道MIG接头液化裂纹及疲劳性能的影响,为轨道交通铝合金焊接液化裂纹的控制及接头设计提供理论依据和试验数据.
1. 试验方法
试验材料选用厚度10和12 mm的6005A-T6铝合金型材,尺寸为350 mm × 150 mm. 如图1所示,对保留表层粗晶组织的10 mm厚铝合金母材进行三层三道MIG焊接,对12 mm厚铝合金母材铣至10 mm厚、去除表层粗晶组织后进行三层三道MIG焊接. 填充材料选用直径1.6 mm的ER5356焊丝,母材及焊丝的合金化学成分如表1所示. 焊接坡口角度60°,预留装配间隙1 mm,试板背部加铝合金垫板进行全熔透焊接. 试验所用设备为福尼斯TPS5000焊接电源和IGM焊接机器人,焊接工艺参数如表2所示.
表 1 6005A及ER5356的化学成分(质量分数,%)Table 1. Chemical composition of 6005A and ER5356材料 Mg Si Fe Mn Cr Al 母材 0.52 0.68 0.15 0.24 0.13 余量 焊丝 4.9 0.04 0.12 0.14 0.012 余量 表 2 焊接工艺参数Table 2. Welding parameters焊道 焊接电流I/A 焊接电压U/V 焊接速度v/(cm·min−1) 摆动参数n/min 打底 256 23.5 60 0 填充 256 23.5 60 100 盖面 233 23.5 60 100 焊接完成之后,采用线切割方式切取接头截面和焊缝表面的金相试样,然后进行研磨、抛光及腐蚀,采用的腐蚀试剂为凯勒试剂,腐蚀时间30 s.利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)技术等分析测试方法对接头微观组织及成分进行分析. 采用高频疲劳试验机分别对表层粗晶接头和表层细晶接头进行高周疲劳测试,应力比R = 0,试验完成后通过最小二乘法绘制S-N曲线,并对两种组织状态下接头的疲劳性能进行对比分析.
2. 试验结果及分析
2.1 母材及接头微观组织分析
图2给出了6005A-T6铝合金母材的微观组织.图2a为光学显微镜下阳极覆膜后的母材组织截面形貌,可以看出母材表面存在厚度约为330 μm的粗晶组织. 母材表层晶粒明显粗化,沿挤压方向呈粗大纤维状分布,晶界附近第二相粗大且聚集(图2b);母材中心层晶粒细小,呈现明显的挤压流线,晶界附近第二相细小且弥散分布(图2c).
图3为保留表层粗晶组织的6005A-T6铝合金三层三道MIG接头截面及微观组织形貌. 图3a为接头截面形貌,整体呈现上宽下窄的“V”形特征. 铝合金MIG焊接头由焊缝区(weld zone, WZ)、部分熔化区(partially melted zone, PMZ)、热影响区(heat affected zone, HAZ)3部分组成. 图3b为焊缝区微观组织,主要由填充金属熔化、凝固形成的等轴晶组成,同时出现了条带状的层间再热组织. 图3c为熔合线附近微观组织:位于熔合线附近的焊缝组织以熔化边界存在的母材晶粒为形核基体外延生长为柱状晶;部分熔化区为焊缝区和热影响区的过渡区,该区域晶粒发生明显的晶界液化现象,是局部熔化后的液相和未熔固相共存的区域;热影响区虽未发生熔化,但在焊接热循环的作用下形成一个过热区.
2.2 母材表层组织状态对液化裂纹的影响
图4为两种焊接接头焊缝表面熔合线附近的微观组织形貌,取样位置和选区如图4a所示. 图4b为表层粗晶接头熔合线附近微观组织的反极图,插入的图片为该区域的晶粒取向图,从图中可以看出焊缝区和热影响区晶粒组织差异较大:焊缝晶粒比较细小,热影响区因原始母材表层粗晶组织的原因晶粒异常粗大;同时表层粗晶接头热影响区中产生液化裂纹:萌生于熔合线,沿着粗晶晶界穿过PMZ后向HAZ扩展. 图4c为表层细晶接头熔合线附近的晶粒取向图,从图中可以看出焊缝区和热影响区晶粒尺寸接近:焊缝组织由细小的等轴晶组成,热影响区因原始母材表层细晶组织的原因晶粒比较细小;表层细晶接头热影响区晶粒因发生再结晶呈现等轴化,晶粒纤维状特征明显弱化. 同时在表层细晶接头热影响区没有发现液化裂纹缺陷. 对比图4b和图4c可以看出,6005A铝合金母材表层组织状态对焊接液化裂纹有明显影响,表层粗晶组织是6005A铝合金接头热影响区产生液化裂纹缺陷的重要原因.
图5为两种焊接接头部分熔化区微观组织,选区位置分别如图4b中区域Ⅰ和图4c中区域Ⅱ所示,可以看出两种接头部分熔化区均发生晶界液化现象. 对比图5a和图5b可以发现,表层粗晶接头部分熔化区晶界液化严重并产生液化裂纹,而表层细晶接头部分熔化区仅发生晶界液化没有形成液化裂纹. 焊接过程中,部分熔化区的温度介于固相线和液相线之间,根据Al-Mg-Si系三元合金平衡相图[17],位于晶界的低熔点成分(Mg2Si、游离Si)与周围的α(Al)基体发生组分液化反应(α + Mg2Si + Si→L,576 ℃)、(α + Mg2Si→L,594 ℃),生成围绕晶粒的晶界液化带,在凝固之后形成由贫溶质α带 + 共晶晶体组成的晶界液化组织[18].
图6为两种焊接接头部分熔化区微观组织EDS元素扫描结果,扫描位置分别如图5所示. 可以看出,表层粗晶接头液化裂纹(图6a)附近Mg和Si元素出现明显富集并且液膜厚度较大(8 ~ 10 μm),而表层细晶接头液化晶界(图6b)附近Mg和Si元素没有明显富集、液膜厚度较小(1 ~ 2 μm). 表层粗晶组织晶界附近第二相粗大(图2b),通过成分液化反应产生的液化相较多. 同时粗晶组织晶粒尺寸较大、晶界面积较小,在同等液化相体积下具有较高的液膜厚度,抵抗拉应力的能力较小,更容易形成液化裂纹[19]. 因此粗晶组织中晶界附近粗大的第二相、较小的晶界面积是表层粗晶组织容易产生液化裂纹的主要原因.
图7描述了表层粗晶接头液化裂纹的形成机理. 图7a为焊接熔池示意图,焊接方向如黑色箭头所示,在液态熔池后方存在一个固-液共存的区域(PMZ),该区域中的晶粒边界发生了成分液化,弱化了晶粒之间的连接. 如图7b所示,表层粗晶组织晶界附近低熔点第二相(Mg2Si和Si)沿着晶界连续分布,加剧了晶界成分液化的敏感性;焊接加热过程中,熔合线附近母材晶界低熔点成分Mg2Si和Si与α(Al)基体发生成分液化反应,形成连续分布的液化通道,如图7c所示. 这种晶间液相的存在大大削弱了晶粒之间的连接. 焊接熔池的凝固过程如图7d所示,连续分布的晶界液化通道受到焊接拉应力的作用,同时晶间液相凝固过程中得不到其它液态金属的补充,从而在热影响区形成液化裂纹. 细晶组织晶界附近第二相细小(图2c),液化反应产生的晶间液膜较薄,抵抗晶界拉应力的能力较强,晶间液相凝固后只是形成晶界液化组织,而没有出现液化裂纹.
2.3 母材表层组织状态对疲劳性能的影响
图8分别为两种焊接接头的S-N曲线. 可以看出,应力幅值对接头的疲劳性能影响显著,随着应力幅值的降低接头疲劳寿命呈增加趋势. 根据S-N曲线拟合方程,计算出不同表层组织状态下的焊接接头在1 × 107循环寿命下的疲劳强度:表层粗晶接头的疲劳强度为93 MPa,表层细晶接头的疲劳强度为107 MPa.
为了研究液化裂纹对疲劳过程的影响,对表层粗晶接头疲劳试样的断口形貌进行了分析,结果如图9所示. 可以看出,疲劳断口主要分为3个部分:疲劳裂纹萌生区、疲劳裂纹扩展区、疲劳裂纹瞬断区. 从图9a可以看出,疲劳裂纹萌生于试样表面,并且裂纹萌生区晶粒边缘圆滑、晶界被液态薄膜覆盖,呈现典型的液化裂纹断口形貌,可以推断该试样的疲劳断裂萌生于液化裂纹附近. 因此表层粗晶组织形成的液化裂纹成为疲劳过程中可能的裂纹源,对接头疲劳性能造成不利影响. 在疲劳裂纹扩展阶段(图9b),断口形貌呈现与裂纹扩展方向垂直的疲劳辉纹及二次裂纹. 疲劳断口瞬断区形貌(图9c)呈现韧窝状特征,为典型的韧性断裂.
3. 结论
(1) 母材表层组织状态对6005A铝合金MIG焊接头液化裂纹影响显著,母材表层为粗晶组织的接头更容易产生液化裂纹缺陷,改善母材组织状态可以减少液化裂纹的产生.
(2) 表层粗晶组织晶界附近第二相粗大、通过组分液化产生的液化相较多,同时晶粒尺寸大、晶界面积小,晶界液化薄膜的厚度较大,降低了晶界抵抗拉应力的能力,是表层粗晶组织容易产生液化裂纹缺陷的主要原因.
(3) 因表层粗晶组织形成的液化裂纹成为疲劳过程中可能的裂纹源,对接头疲劳性能产生不利影响. 在1 × 107循环周次下,表层粗晶接头的疲劳强度为93 MPa,表层细晶接头的疲劳强度为107 MPa.
-
表 1 6005A及ER5356的化学成分(质量分数,%)
Table 1 Chemical composition of 6005A and ER5356
材料 Mg Si Fe Mn Cr Al 母材 0.52 0.68 0.15 0.24 0.13 余量 焊丝 4.9 0.04 0.12 0.14 0.012 余量 表 2 焊接工艺参数
Table 2 Welding parameters
焊道 焊接电流I/A 焊接电压U/V 焊接速度v/(cm·min−1) 摆动参数n/min 打底 256 23.5 60 0 填充 256 23.5 60 100 盖面 233 23.5 60 100 -
[1] 董晓晶, 李桓, 杨立军, 等. 铝合金多股复合脉冲MIG焊接接头组织及性能分析[J]. 焊接学报, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289 Dong Xiaojing, Li Huan, Yang Lijun, et al. Microstructure and mechanical properties of pulse MIG aluminum alloy welded joints by means of a novel multi-strands composite welding wire[J]. Transactions of the China Welding Institution, 2019, 40(11): 61 − 67. doi: 10.12073/j.hjxb.2019400289
[2] Wang Y, Wei B, Guo Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2): 58 − 64.
[3] Qi Guangbin, Dong Honggang, Yang Jiang, et al. Texture and mechanical properties of metal inert gas welded 6082-T651 aluminum alloy joints[J]. China Welding, 2021, 30(1): 1 − 12.
[4] 邵盈恺, 王玉玺, 杨志斌, 等. 基于熔深优化的7075铝合金等离子-MIG复合焊接热裂纹敏感性[J]. 金属学报, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357 Shao Yingkai, Wang Yuxi, Yang Zhibin, et al. Plasma-MIG hybrid welding hot cracking susceptibility of 7075 aluminum alloy based on optimum of weld penetration[J]. Acta Metallurgiga Sinica, 2018, 54(4): 547 − 556. doi: 10.11900/0412.1961.2017.00357
[5] Huang C, Kou S. Liquation cracking in partial-penetration aluminum welds: Effect of penetration oscillation and backfilling[J]. Welding Journal, 2003, 82(6): 184 − 194.
[6] 王俊, 李芳, 张跃龙, 等. 焊丝中Si元素含量对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2020, 41(1): 55 − 60. Wang Jun, Li Fang, Zhang Yuelong, et al. Effect of Si content in welding wire on crack sensitivity of aluminum alloy and its mechanism[J]. Transactions of the China Welding Institution, 2020, 41(1): 55 − 60.
[7] 俞照辉, 严红革, 严军辉, 等. 热影响区连续孔隙状裂纹的表征及产生机理[J]. 焊接学报, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132 Yu Zhaohui, Yan Hongge, Yan Junhui, et al. Characterization and formation mechanisms of continuous porosities-llike cracks in the heat-affected zone[J]. Transactions of the China Welding Institution, 2019, 40(5): 84 − 88. doi: 10.12073/j.hjxb.2019400132
[8] Dong P, Li H M, Sun D Q, et al. Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy[J]. Marerials & Design, 2013, 45: 524 − 531.
[9] Ji S D, Meng X C, Liu J G, et al. Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy[J]. Marerials & Design, 2014, 62: 113 − 117.
[10] 张健, 雷振, 王旭友. 高速列车6005A铝合金型材焊接热裂纹分析[J]. 焊接学报, 2012, 33(8): 60 − 64. Zhang Jian, Lei Zhen, Wang Xuyou. Welded hot crack analysis of 6005A aluminum[J]. Transactions of the China Welding Institution, 2012, 33(8): 60 − 64.
[11] 刘敬萱, 沈健, 李锡武, 等. 6005A-T6铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110 Liu Jingxuan, Shen Jian, Li Xiwu, et al. Microstructure and fatigue properties of friction stir welded 6005A-T5 aluminum alloy[J]. Materials Reports, 2021, 35(2): 2092 − 2097. doi: 10.11896/cldb.20030110
[12] Liu Haobo, Yang Shanglei, Xie Charjie, et al. Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint[J]. Journal of alloys and Compounds, 2018, 741: 188 − 196. doi: 10.1016/j.jallcom.2017.12.374
[13] Birol Yucel. Impact of partial recrystallization on the performance of 6005A tube extrusions[J]. Engineering Failure Analysis, 2010, 17(5): 1110 − 1116. doi: 10.1016/j.engfailanal.2010.01.006
[14] 申澎洋, 唐建国, 叶凌英, 等. 组织不均匀性对6005A铝合金晶间腐蚀性能的影响[J]. 材料研究学报, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708 Shen Pengyang, Tang Jianguo, Ye Lingying, et al. Effects of microstructure heterogeneity on intergranular corrosion susceptibility of Al-alloy 6005A[J]. Chinese Journal of Materials Research, 2018, 32(10): 751 − 758. doi: 10.11901/1005.3093.2017.708
[15] 张大鹏, 王顺成, 周楠, 等. 粗晶环对无铅2011铝合金挤压棒材力学与切削性能的影响[J]. 强合金加工技术, 2020, 48(7): 24 − 27. Zhang Dapeng, Wang Shuncheng, Zhou Nan, et al. Effects of coarse-grained on mechanical properties and cutting performance of lead-free 2011 aluminum alloy extruded bar[J]. Light Alloy Fabrication Technology, 2020, 48(7): 24 − 27.
[16] 刘聪, 袁定旺, 杨修波, 等. 组织不均匀性对铝合金焊接区裂纹的影响[J]. 电子显微学报, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001 Liu Cong, Yuan Dingwang, Yang Xiubo, et al. Effects of microstructure heterogeneity on crack behaviors in the welding zones of aluminum alloys parts[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 181 − 188. doi: 10.3969/j.issn.1000-6281.2015.03.001
[17] 李学朝. 铝合金材料组织与金相图谱[M]. 北京: 冶金工业出版社, 2019. Li Xuechao. Microstructure and metallographic spectrum of aluminum alloy materials [M]. Beijing: Metallurgical Industry Press, 2019.
[18] Huang C, Kou S. Partially melted zone in aluminum welds-liquation mechanism and directional solidification[J]. Welding Journal, 2000, 79(5): 113 − 120.
[19] 李乐, 路媛媛, 唐峰, 等. 表面纳米化对镍基高温合金焊接液化裂纹的影响[J]. 焊接学报, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030 Li Le, Lu Yuanyuan, Tang Feng, et al. Effect of surface nanocrystallization on welding liquation cracking of nickel-base superalloy[J]. Transactions of the China Welding Institution, 2019, 40(1): 151 − 155. doi: 10.12073/j.hjxb.2019400030
-
期刊类型引用(7)
1. 严继斌. 基于填充板条的7075铝合金激光焊接裂纹抑制方法. 山西冶金. 2024(02): 29-31 . 百度学术
2. 赖鸿群,秦浩骏. 6082铝合金搭接焊焊接性能研究. 焊接技术. 2024(04): 46-50+153-154 . 百度学术
3. 张风东,张贺,邹刚,张成国,张铁浩,张振鹏. 铝合金列车车身焊缝表面激光清洗-质量检测一体化方法. 焊接. 2024(03): 52-58 . 百度学术
4. 邓鑫,唐鸿洋,金文福,李欢,刘秋颖,何金. 铝挤压型材粗晶组织对焊接质量影响. 有色金属加工. 2024(03): 36-40 . 百度学术
5. 武永寿,韩晓辉,陈姬,李刚卿,李帅贞,左帅. 轨道车辆铝合金长大薄壁脉冲复合磁控高效弧焊工艺研究. 电焊机. 2024(09): 14-23+46 . 百度学术
6. 王宇,屈玉石,吴琪,王周冰,刘迪. 6005A轨道车体皮质层对焊接接头裂纹的影响. 热处理技术与装备. 2024(05): 40-43 . 百度学术
7. 张明军,李雄,李河清,李晨希,张健,程波,王开明,毛聪,胡永乐. 纳秒脉冲激光清洗对AZ31B镁合金激光焊接质量的影响. 汽车工程. 2022(11): 1786-1796 . 百度学术
其他类型引用(2)