Microstructure and properties of brazed W-Cu composites and beryllium bronze joint
-
摘要: 采用BAg56CuZnSn,BAg50ZnCdCuNi和BAg49ZnCuMnNi银钎料实施了钨铜合金/铍青铜异质材料接头的感应钎焊连接,研究了其钎焊界面组织与力学性能.结果表明,3种银钎料均能获得完好界面钎焊接头,钎料与钨铜和铍青铜形成较好冶金结合.钎料与铍青铜界面冶金结合充分,形成明显互扩散区.钎料与钨铜钎焊界面清晰,且钎料向钨铜近界面区域形成明显扩散渗入现象.强度测试表明,BAg49ZnCuMnNi钎焊接头强度最高,达到250 MPa,接头断裂均发生在钨铜侧钎焊界面.分析表明,钎料向钨铜渗入明显促进界面结合,钎料中添加镍,由于镍与钨的扩散互溶进一步提高界面冶金结合,Mn元素添加明显细化钎缝晶粒,接头强度显著提升.Abstract: W-Cu composites and Beryllium bronze dissimilar joints were prepared by induction brazing method using BAg56CuZnSn, BAg50ZnCdCuNi and BAg49ZnCuNiMn, respectively. Interfacial microstructure and mechanical properties of the brazed joints were studied. The results show that all the brazed joints displayed perfectly metallurgical bonded interface. Obvious diffusion zone was formed in bonded interface between braze and beryllium bronze. The fracture of brazed joints all occurred at the brazing interface of W-Cu side, and the joint using BAg49ZnCuNiMn solder obtained the highest strength which reaching 250 MPa. Meanwhile, clear boundary braze/W-Cu interface was also observed. The braze had obviously infiltrated into the W-Cu matrix near their interface, leading to increasing of the interface bonding strength. The addition of nickel in braze further improved the metallurgical bonding of the interface due to the diffusion and mutual dissolution of nickel and tungsten. Furthermore, manganese can refine the grain size of brazed joint and improve the joint strength.
-
-
表 1 钎料化学成分(质量分数, %)与熔化特性
Table 1 Chemical composition of braze alloy and melting temperature
钎料 Ag Cu Zn Cd Sn Ni Mn 熔化温度T/℃ BAg56CuZnSn 55 ~ 57 21 ~ 23 15 ~ 19 — 4.5 ~ 5.5 — — 620 ~ 655 BAg50ZnCdCuNi 49 ~ 51 14.5 ~ 16.5 13.5 ~ 17.5 15 ~ 17 — 2.5-3.5 — 635 ~ 690 BAg49ZnCuMnNi 48 ~ 50 15 ~ 17 21 ~ 25 — — 4 ~ 5 7 ~ 8 680 ~ 705 表 2 BAg56CuZnSn钎焊接头界面组织能谱分析
Table 2 EDS chemical analysis results of WCu/Qbe joint brazed using BAg56CuZnSn filler metal
标记 原子分数a(%) Ag Cu Zn Sn W 1 13.08 58.66 19.92 3.23 — 2 81.76 5.12 8.28 4.85 — 3 9.63 67.89 19.86 2.62 — 4 4.63 74.49 19.56 1.3 — 5 3.67 75.28 18.28 — 2.77 表 3 BAg50ZnCdCuNi钎焊接头钎缝能谱分析
Table 3 EDS chemical analysis results of WCu/Qbe joint brazed using BAg50ZnCdCuNi filler metal
标记 原子分数a(%) Ag Cu Zn Ni Cd W A 8.6 72.68 14.39 2.42 1.87 — B 70.02 6.33 1.98 — 21.67 — C 1.47 79.2 17.1 1.02 0.21 — D 70.19 4.45 2.05 — 23.31 — E 3.07 75.28 16.51 5.15 — — F 3.26 78.98 17.04 0.36 — 0.36 G 2.54 77.14 16.78 0.93 — 2.22 -
[1] 吕大铭. 钨铜材料的生产、应用与发展[J]. 中国钨业, 2004, 19(5): 74 − 79. Lü Daming. Production, application and development of tungsten-copper composites[J]. China Tungsten Industry, 2004, 19(5): 74 − 79.
[2] 范景莲, 刘涛, 成会朝. 中国钨基合金的进步与发展[J]. 中国钨业, 2009, 24(5): 99 − 106. doi: 10.3969/j.issn.1009-0622.2009.05.021 Fan Jinglian, Liu Tao, Cheng Huichao. Progress and development of tungsten-based alloys in China[J]. China Tungsten Industry, 2009, 24(5): 99 − 106. doi: 10.3969/j.issn.1009-0622.2009.05.021
[3] 汪亦凡, 丁辉, 方军, 等. 钨铜复合材料的研究及应用现状[J]. 四川有色金属, 2020(3): 53 − 56. Wang Yifan, Ding Hui, Fang Jun, et al. Application and research of W-Cu composites[J]. Sichuan Nonferrous Metals, 2020(3): 53 − 56.
[4] Widodo Widjaja Basuki, Jarir Aktaa. Investigation on the diffusion bonding of tungsten and EUROFER97[J]. Journal of Nuclear Materials, 2011, 417(1-3): 524 − 527. doi: 10.1016/j.jnucmat.2010.12.121
[5] 陈柏炎, 李先芬, 王成, 等. Ti-Cu复合中间层在钨/CLAM钢扩散连接中性能[J]. 金属功能材料, 2021, 28(1): 65 − 72. Chen Boyan, Li Xianfen, Wang Cheng, et al. Performance of W/CLAM steel diffusion bonding with Ti-Cu mixed powder interlayer[J]. Metallic Functional Materials, 2021, 28(1): 65 − 72.
[6] 王艳艳. 扩散焊接钨/中间层/钢的界面结构及性能研究[D]. 长沙: 中南大学, 2013. Wang Yanyan. Microstructure and properties of diffusion bonded joints between tungsten and steel using a interlayer[D]. Changsha: Central South University, 2013.
[7] 李军, 杨建锋, 乔冠军. 连接温度对Ti为中间层钨/铜合金扩散接头组织和强度的影响[J]. 稀有金属材料与工程, 2012, 41(7): 1235 − 1238. Li Jun, Yang Jianfeng, Qiao Guagjun. Effect of bonding temperature on microstructure and strength of W/CuCrZr alloy joints diffusion bonded with a Ti interlayer[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1235 − 1238.
[8] Premjit Singh K, Rushub Bhavsar, Kaushal Patel, et al. Joining of WCu-CuCrZr coupon materials by diffusion bonding technique for divertor plasma facing components[J]. Fusion Engineering and Design, 2017, 121: 272 − 281. doi: 10.1016/j.fusengdes.2017.08.003
[9] 胡大为, 杨芝, 胡可, 等. 钛锆钼合金与钨铼合金的SPS扩散连接[J]. 焊接学报, 2018, 39(11): 73 − 77. Hu Dawei, Yang Zhi, Hu Ke, et al. Diffusion bonding between TZM alloy and WRe alloy by spark plasma sintering[J]. Transactions of the China Welding Institution, 2018, 39(11): 73 − 77.
[10] 韩桂海, 赵洪运, 宋晓国, 等. Ti-50Ni钎焊TZM与ZrCp-W接头界面组织及性能[J]. 稀有金属材料与工程, 2018, 47(6): 1936 − 1940. Han Guihai, Zhao Hongyun, Song Xiaoguo, et al. Interfacial microstructure and properties of TZM alloy and ZrCp-W composite joints brazed using Ti-50Ni filler[J]. Rare Metal Materials and Engineering, 2018, 47(6): 1936 − 1940.
[11] 汪从喜. 铜基钎料钎焊W-Cu复合材料与不锈钢的链接机理研究[D]. 镇江: 江苏科技大学, 2015. Wang Congxi. Research on connection mechanism of W-Cu composite and stainless steel by copper based brazing filler metals[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
[12] 杨骏. 改进型Ni基急冷钎料钎焊W-Cu复合钎料和不锈钢的研究[D]. 镇江: 江苏科技大学, 2016. Yang Jun. Research on W-Cu composite and stainless steel brazed joints with improved Ni-based rapidly-cooled filler metals[D]. Zhenjiang: Jiangsu University of Science and Technology, 2016.
[13] 孙威威. W-Cu和不锈钢Ni基钎料钎焊接头的热疲劳机理及高温弯曲强度研究[D]. 镇江: 江苏科技大学, 2018. Sun Weiwei. Investigation of thermal fatigue mechanism and high-temperature bending strength of W-Cu/1Cr18Ni9 brazed joint with Ni-based filler metal [D]. Zhenjiang: Jiangsu University of Science and Technology, 2018.
[14] 刘天鸷, 王英敏, 魏明玉, 等. 钨/低活化钢连接用Fe基非晶钎料[J]. 材料热处理学报, 2018, 39(6): 148 − 155. Liu Tianzhi, Wang Yingmin, Wei Mingyu, et al. Fe-based amorphous brazing filler metal for joining tungsten/reduced activation steels[J]. Transactions of Materials and Heat Treatment, 2018, 39(6): 148 − 155.
[15] Diana Bachurina, Alexey Suchkov, Julia Gurova, et al. Joining tungsten with steel for DEMO: Simultaneous brazing by Cu-Ti amorphous foils and heat treatment[J]. Fusion Engineering and Design, 2021, 162: 112099. doi: 10.1016/j.fusengdes.2020.112099
[16] 张启运, 庄鸿寿. 钎焊手册(第三版)[M]. 北京: 机械工业出版社, 2017. Zhang Qiyun, Zhuang Hongshou. Handbook of brazing and soldering, 3rd edition [M]. Beijing: China Machine Press, 2017.
[17] 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009. Tang Renzheng, Tian Rongzhang. Binary alloy phase diagrams and crystal structure of intermediate phase [M]. Changsha: Central South University Press, 2009.
[18] 霍方方. 镍基钛基钎料钎焊钨钨接头组织与性能研究[D]. 郑州: 郑州大学, 2017. Huo Fangfang. Investigation on microstructure and properties of the W-W joints brazed by Ni-based and Ti-based fillers[D]. Zhengzhou: Zhengzhou University, 2017.
-
期刊类型引用(1)
1. 丁业立,牛红伟,刘多,刘积厚,雷玉珍. K9玻璃与2507不锈钢的真空钎焊. 焊接. 2019(01): 1-4+11+65 . 百度学术
其他类型引用(1)