Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint
-
摘要: 对3 mm厚TC4钛合金/15-5PH不锈钢异种材料进行了添加镍铝青铜(nickel aluminum bronze,NAB)过渡层的激光填充材料焊接,研究了NAB过渡层对接头成形、微观组织与力学性能的影响. 结果表明,添加NAB过渡层的TC4钛合金/15-5PH不锈钢异种材料激光焊接获得了良好成形的全熔透接头,接头抗拉强度达290 MPa,接头钛合金侧界面层硬度为547.8 HV. 接头钛合金侧界面由3种不同形态的金属间化合物层组成,其中脆性较小的Cu-Ti,Ni-Ti相的数量显著增多,而脆性高的Ti-Fe相数量明显减少,表明添加NAB过渡层抑制了接头钛合金侧界面脆性高的Ti-Fe相的形成.Abstract: The laser welding of 3 mm thick TC4 titanium alloy/15-5PH stainless steel was carried out with nickel aluminum bronze (NAB) as the transition layer. Effects of adding NAB transition layer on the joint formation, microstructure and mechanical properties were studied. The results show that the laser welding of TC4 titanium alloy/15-5PH stainless steel with NAB transition layer can obtain a well-formed full penetration joint. The tensile strength of the joint is 290 MPa, and the hardness of the interface layer on the titanium alloy side is 547.8 HV. The interface on the titanium alloy side of the joint is composed of three IMCs layers with different morphologies. The number of less brittle Cu-Ti and Ni-Ti phases increases significantly, while the number of highly brittle Ti-Fe phases decreases significantly, indicating that the addition of NAB transition layer inhibits the formation of highly brittle Ti-Fe phases at the interface of titanium alloy side.
-
Keywords:
- laser welding /
- titanium alloy /
- stainless steel /
- mechanical property
-
-
表 1 材料的化学成分(质量分数,%)
Table 1 Chemical compositions of materials
材料 Mn Ni Al V Cr Cu Fe Ti TC4钛合金 — — 5.5 ~ 6.8 3.5 ~ 4.5 — — ≤0.30 88.4 ~ 90.7 NAB青铜 0.5 ~ 4.0 3.0 ~ 6.0 7.0 ~ 11.0 — — 77.5 ~ 82.0 2.0 ~ 6.0 — 15-5PH不锈钢 ≤1.0 4.7 ~ 5.7 — — 14 ~ 15 1.7 ~ 2.5 75.5 ~ 78.5 0.15 ~ 0.30 表 2 优化的激光焊接工艺参数
Table 2 Optimized laser welding process parameters
激光功率
P/W焊接速度
v/(mm·min−1)离焦量
Δf/mm偏移量
d(mm)氩气流量
Q/(L·min−1)3500 2500 3 0.4 20 表 3 激光焊接接头的拉伸性能
Table 3 Tensile properties of laser welded joints
材料 屈服强度ReL/MPa 抗拉强度Rm/MPa 断后伸长率
A(%)TC4钛合金 865 1012 ≥10.0 15-5PH不锈钢 785 980 ≥8.0 NAB青铜 268 638 15.0 TC4/15-5PH接头试样 — 290 2.0 表 4 TC4侧界面IMC组织的EDS分析(原子分数,%)
Table 4 EDS analysis of IMC structure of TC4 side interface
区域 Ti V Cr Fe Ni Cu 可能的物相 1 57.47 1.29 1.01 1.19 1.55 37.50 CuTi2 2 40.71 1.07 0.17 2.47 3.48 52.10 CuTi 3 25.18 0.98 0.06 1.63 1.69 70.45 CuTi 4 34.15 0 0.12 12.26 14.54 38.93 CuTi,NiTi2 5 16.30 0.11 0.10 3.63 12.56 67.30 NiTi 6 4.32 0 0 2.34 2.32 91.02 FeTi2,NiTi2 7 33.69 0.25 0.24 20.56 20.50 24.76 NiTi2,FeTi2 8 6.10 0.06 0.05 3.47 3.66 86.65 Cu 基固溶体 9 33.01 0 0.14 16.35 15.68 34.83 NiTi2,FeTi2 -
[1] Chen H, Bi G, Lee B Y, et al. Laser welding of CP Ti to stainless steel with different temporal pulse shapes[J]. Journal of Materials Processing Technology, 2016, 231: 58 − 65. doi: 10.1016/j.jmatprotec.2015.12.016
[2] 王廷, 张秉刚, 张艳桥, 等. 采用不同结构Cu/V填充层的钛合金/不锈钢电子束焊接试验[J]. 焊接学报, 2014, 35(8): 71 − 74. Wang Ting, Zhang Binggang, Zhang Yanqiao, et al. Experimental research on electron beam welding of titanium alloy to stainless steel based on Cu/V filler metals with different shapes[J]. Transactions of the China Welding Institution, 2014, 35(8): 71 − 74.
[3] Vannod J, Bornert M, Bidaux J E, et al. Mechanical and microstructural integrity of nickeltitanium and stainless steel laser joined wires[J]. Acta Materialia, 2011, 59(17): 6538 − 6546.
[4] Shanmugarajan B, Padmanabham G. Fusion welding studies using laser on Ti-SS dissimilar combination[J]. Optics & Lasers in Engineering, 2012, 50(11): 1621 − 1627.
[5] Dey H C, Ashfaq M, Bhaduri A K, et al. Joining of titanium to 304L stainless steel by friction welding[J]. Journal of Materials Processing Technology, 2009, 209(18-19): 5862 − 5870. doi: 10.1016/j.jmatprotec.2009.06.018
[6] Bodunrin M O, Chown L H, Omotoyinbo J A. Development of low-cost titanium alloys: A chronicle of challenges and opportunities[J]. Materials Today:Proceedings, 2021, 38: 564 − 569. doi: 10.1016/j.matpr.2020.02.978
[7] Mannucci A, Tomashchuk I, Mathieu A, et al. Direct laser welding of pure titanium to austenitic stainless steel[J]. Procedia CIRP, 2018, 74: 485 − 490. doi: 10.1016/j.procir.2018.08.138
[8] Gnyusov S F, Klimenov V A, Alkhimov Y V, et al. Formation of the structure of titanium and stainless steel in laser welding[J]. Welding International, 2013, 27(4): 295 − 299. doi: 10.1080/09507116.2012.715908
[9] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel[J]. Materials Letters, 2010, 64: 1105 − 1108. doi: 10.1016/j.matlet.2010.02.024
[10] Tomashchuk I, Sallamand P, Belyavina N, et al. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer[J]. Materials Science and Engineering A, 2013, 585: 114 − 122. doi: 10.1016/j.msea.2013.07.050
[11] Tomashchuk I, Sallamand P, Andrzejewski H, et al. The formation of intermetallics indissimilar Ti6Al4V/copper/AISI 316L electron beam and Nd: YAG laser joints[J]. Intermetallics, 2011, 19(10): 1466 − 1473. doi: 10.1016/j.intermet.2011.05.016
[12] Elrefaey A, Tillmann W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer[J]. Journal of Materials Processing Technology, 2009, 209(5): 2746 − 2752. doi: 10.1016/j.jmatprotec.2008.06.014
[13] Atasoy E, Kahraman N. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer[J]. Materials Characterization, 2008, 59(10): 1481 − 1490. doi: 10.1016/j.matchar.2008.01.015
[14] Lee M K, Lee J G, Lee J K, et al. Strong bonding of titanium to copper through the elimination of the brittle interfacial intermetallics[J]. Journal of Materials Research, 2008, 23(8): 2254 − 2263. doi: 10.1557/JMR.2008.0269
[15] Zhang Y, Sun D, Gu X, et al. Characterization of laser-welded Ti alloy and stainless steel joint using Cu interlayer[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 6092 − 6101. doi: 10.1007/s11665-019-04319-1
[16] Zhang Y, Chen Y, Zhou J, et al. Experimental and numerical study on microstructure and mechanical properties for laser welding-brazing of TC4 Titanium alloy and 304 stainless steel with Cu-base filler metal[J]. Journal of Materials Research and Technology, 2020, 9(1): 465 − 477. doi: 10.1016/j.jmrt.2019.10.075
[17] Li J, Liu Y, Gao Y, et al. Benefits of interfacial regulation with interlayers in laser welding Ti6Al4V/316L steel[J]. Optics & Laser Technology, 2020, 125: 1 − 10.
[18] Wang T, Zhang B, Feng J. Influences of different filler metals on electron beam welding of titanium alloy to stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 108 − 114. doi: 10.1016/S1003-6326(14)63034-X
[19] 范朝, 程东海, 陈益平, 等. 置氢对钛合金激光焊接接头超塑变形均匀性的影响[J]. 焊接学报, 2016, 37(4): 57 − 60. Fan Zhao, Cheng Donghai, Chen Yiping, et al. Effect of hydrogenation on uniformity of superplastic deformation of titanium alloy laser weld[J]. Transactions of the China Welding Institution, 2016, 37(4): 57 − 60.
[20] Turner M W, Crouse P L, Li L. Comparison of mechanisms and effects of Nd: YAG and CO2 laser cleaning of titanium alloys[J]. Applied Surface Science, 2006, 252(13): 4792 − 4797. doi: 10.1016/j.apsusc.2005.06.050
[21] Zhang Y, Zhou J, Sun D, et al. Two pass laser welding of TC4 Titanium alloy to 301L stainless steel via pure V interlayer[J]. Journal of Materials Research and Technology, 2020, 9(2): 1400 − 1404. doi: 10.1016/j.jmrt.2019.11.066
[22] 何鹏, 冯吉才, 钱乙余, 等. 扩散连接接头金属间化合物新相的形成机理[J]. 焊接学报, 2001, 22(1): 53 − 55. doi: 10.3321/j.issn:0253-360X.2001.01.014 He Peng, Feng Jicai, Qian Yiyu, et al. Forming mechanism of interface intermetallic compounds for diffusion bonding[J]. Transactions of the China Welding Institution, 2001, 22(1): 53 − 55. doi: 10.3321/j.issn:0253-360X.2001.01.014