Microstructure and mechanical property of the thick-walled dissimilar steel joint of FSS/ASS with the combined "TIG cold welding + UNGW"
-
摘要: 为了有效解决铁素体不锈钢的焊接热影响区晶粒易粗化问题,以及奥氏体不锈钢焊接时在接头部分熔合区及其附近热影响区内因易形成蠕虫状δ铁素体而显著降低该区域耐腐蚀性的问题,提出了“TIG冷焊 + UNGW”的组合焊接工艺,并进行了1Cr17/1Cr18Ni9Ti厚壁异种不锈钢的焊接,同时对所得接头的显微组织、力学性能及耐腐蚀性进行了测试与分析. 结果表明,组合焊接头的1Cr17母材热影响区晶粒未发生粗化,并且1Cr18Ni9Ti母材部分熔合区及其附近热影响区内未形成蠕虫状δ铁素体;组合焊接头的抗拉强度优于1Cr17母材,并且1Cr17母材热影响区的冲击吸收能量与1Cr17母材相当;组合焊接头的熔敷层、1Cr18Ni9Ti母材、1Cr17母材、UNGW焊缝区及完整接头的耐腐蚀性呈依次下降的趋势.
-
关键词:
- “TIG冷焊 + UNGW”组合焊 /
- 异种不锈钢焊接 /
- 显微组织 /
- 耐腐蚀性
Abstract: A combined welding technology of "TIG cold welding + UNGW" in this paper was proposed, in order to effectively solve the problem of welding heat affected zone(HAZ) grain coarsening in ferritic stainless steel, and the problem of forming vermicular δ ferrite in the part of fusion zone of the welded joint and near welding HAZ for welding of austenitic stainless steel, which significantly reduces corrosion resistance in this areas. Welding between 1Cr17/1Cr18Ni9Ti thick wall dissimilar stainless steels was conducted, meanwhile the microstructure, mechanical properties and corrosion resistance of the welded joint were tested and analyzed. The result shows that the HAZ grains of 1Cr17 base metal of combined welded joint are not coarsened, moreover, there is no vermicular δ ferrite in the part of fusion zone and near heat affected zone of 1Cr18Ni9Ti base metal. The tensile strength of combined welded joint is better than that of 1Cr17 base metal, and the impact absorption energy of HAZ of 1Cr17 base metal is equivalent to that of the 1Cr17 base metal. It shows a downward trend of corrosion resistance from the cladding layer of combined welded joint, the 1Cr18Ni9Ti base metal, 1Cr17 base metal, UNGW weld zone to the welded joint. -
-
图 5 组合焊接头盖面焊不同区域的显微组织
Figure 5. Microstructure of the covering weld of combined welding joint at the different zones. (a) both sides of fusion line of 1Cr17 base metal; (b) cladding layer on the 1Cr17 side; (c) both sides of fusion line of UNGW on the 1Cr17 side; (d) weld center of UNGW; (e) both sides of fusion line of UNGW on the 1Cr18Ni9Ti side; (f) both sides of fusion line of 1Cr18Ni9Ti base metal
表 1 TIG冷焊参数
Table 1 Parameters of TIG cold welding
熔敷层 焊丝直径
d/mm氩气流量
Q/( L·min−1)冷焊时间
t/ms冷焊电流
I/A前 5 层 0.8 8 160 170 其余层 1.6 10 200 250 表 2 UNGW焊接参数
Table 2 Welding parameters of UNGW
电弧电压
U/V焊接电流
I/A焊接速度
v/(mm·s−1)脉冲频率
f/Hz焊丝伸出长度
Ls/mm30 290 7.3 139 24 表 3 母材及ER347L焊丝化学成分(质量分数,%)
Table 3 Chemical compositions of base metals and ER347L wire
材料 C Si Mn S P Cr Ni Mo N Nb Ti Fe 1Cr17 0.043 0.31 0.31 0.02 0.035 16.18 0.18 — 0.035 — — 余量 1Cr18Ni9Ti 0.10 0.88 1.56 0.02 0.02 18.60 9.70 — — — 0.60 余量 ER347L 0.021 0.46 1.72 0.005 0.018 19.49 9.42 0.08 — 0.52 — 余量 表 4 室温下母材及组合焊接头不同区域的冲击吸收能量(J)
Table 4 Impact absorbed energy of base metals and the different zones of combined welding joint at the room temperature
V形缺口位置 试样1 试样2 试样3 平均值 1Cr17母材 15.9 16.1 22.8 18.3 1Cr18Ni9Ti母材 217.4 244 242 234.5 1Cr17母材HAZ 19.1 18 30.1 22.4 熔敷层中心 137.4 105 166 136.1 UNGW焊缝中心 94.3 106.4 118.4 106.4 表 5 电化学测试结果
Table 5 Results of electrochemical test
测试试样 自腐蚀电位
Ecorr/V自腐蚀电流密度
icorr/(μA·cm−2)熔敷层 −0.264 0.6196 1Cr18Ni9Ti母材 −0.289 0.9089 1Cr17母材 −0.327 0.9695 UNGW焊缝区 −0.305 1.108 完整接头 −0.301 1.190 -
[1] 郑淮北, 叶晓宁, 张雪峰, 等. 12%Cr铁素体不锈钢粗晶区组织转变和晶粒长大及析出相分析[J]. 焊接学报, 2011, 32(6): 37 − 40. Zheng Huaibei, Ye Xiaoning, Zhang Xuefeng, et al. Microstructure transformation, grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. Transactions of the China Welding Institution, 2011, 32(6): 37 − 40.
[2] Lippold J C, Kotecki D J. 不锈钢焊接冶金学及焊接性[M]. 陈剑虹, 译. 北京: 机械工业出版社, 2008. Lippold J C, Kotecki D J. Welding metallurgy and weldability of stainless steel[M]. Chen Jianhong, trans. Beijing: China Machine Press, 2008.
[3] 郑韶先, 徐龙强, 杜宝峰, 等. 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能[J]. 机械工程材料, 2021, 45(4): 13 − 18. doi: 10.11973/jxgccl202104003 Zheng Shaoxian, Xu Longqiang, Du Baofeng, et al. Microstructures and corrosion resistance of 1Cr18Ni9Ti stainless steel pulsed ultra-narrow-gap welded joint[J]. Materials for Mechanical Engineering, 2021, 45(4): 13 − 18. doi: 10.11973/jxgccl202104003
[4] 尚文娟. 430铁素体不锈钢焊接接头脆化及低热输入焊接工艺研究[D]. 兰州: 兰州理工大学, 2013. Shang Wenjuan. Study on welded joint embrittlement and low heat input welding technology of 430 ferritic stainless steel[D]. Lanzhou: Lanzhou University of Technology, 2013.
[5] 贺舒榕, 王文先, 张婷婷, 等. 铁素体不锈钢CMT焊接接头HAZ组织性能研究[J]. 机械工程与自动化, 2014(5): 97 − 98. doi: 10.3969/j.issn.1672-6413.2014.05.039 He Shurong, Wang Wenxian, Zhang Tingting, et al. Microstructures and properties of ferritic stainless steel CMT welding HAZ[J]. Mechanical Engineering & Automation, 2014(5): 97 − 98. doi: 10.3969/j.issn.1672-6413.2014.05.039
[6] 刘腊腊, 胡绳荪, 申俊琦, 等. 激光焊接热输入对26Cr-3.5Mo铁素体不锈钢组织性能的影响[J]. 中国激光, 2015, 42(2): 101 − 107. Liu Lala, Hu Shengsun, Shen Junqi, et al. Effect of laser welding heat input on microstructure and properties of 26Cr-3.5Mo ferritic stainless steel[J]. Chinese Journal of Lasers, 2015, 42(2): 101 − 107.
[7] Reddy G M, Mohandas T, Rao A S, et al. Influence of welding processes on microstructure and mechanical properties of dissimilar austenitic-ferritic stainless steel welds[J]. Materials and Manufacturing Processes, 2007, 20(2): 147 − 173.
[8] 郑韶先, 汪军平, 杨妹娟, 等. 1Cr17不锈钢表面TIG冷焊重熔和丝材熔敷工艺及改性层的组织和性能[J]. 机械工程材料, 2021, 45(12): 42 − 48. doi: 10.11973/jxgccl202112008 Zheng Shaoxian, Wang Junping, Yang Meijuan, et al. Remelting and wire cladding process by TIG cold welding on surface of 1Cr17 stainless steel and microstructures and properties of modified layers[J]. Materials for Mechanical Engineering, 2021, 45(12): 42 − 48. doi: 10.11973/jxgccl202112008
[9] 郑韶先, 时哲, 韩峰, 等. 超细颗粒焊剂约束电弧超窄间隙焊接1Cr18Ni9Ti不锈钢的焊缝成形分析[J]. 焊接学报, 2015, 36(2): 67 − 70. Zheng shaoxian, Shi Zhe, Han Feng, et al. Ultra-narrow-gap weld of 1Cr18Ni9Ti stainless steel with constricted arc by ultra-fine granular flux[J]. Transactions of the China Welding Institution, 2015, 36(2): 67 − 70.
[10] 张勇, 覃作祥, 许鸿吉, 等. 经济型铁素体不锈钢焊接接头组织与耐蚀性能[J]. 焊接学报, 2012, 33(12): 18 − 22. Zhang Yong, Qin Zuoxiang, Xu Hongji, et al. Microstructure and corrosion resistance of welding joints of economic ferritic stainless steel[J]. Transactions of the China Welding Institution, 2012, 33(12): 18 − 22.
-
期刊类型引用(12)
1. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
2. 陈平. 2系铝合金的搅拌摩擦焊接接头微观组织与力学性能研究. 北京印刷学院学报. 2024(03): 32-37 . 百度学术
3. 王浡婳,张立杰. 铝合金搅拌摩擦焊接头微观组织和力学性能分析. 精密成形工程. 2023(01): 94-100 . 百度学术
4. 许辉,刘宽,徐耀钟,于文凯,刘婷,王笑含,徐雪华. 2A14铝合金FSW焊缝背部线状缺陷返修工艺. 电焊机. 2023(03): 117-123 . 百度学术
5. 马领航,李波,赵彦广,宋建岭,高世康,李雨,许子彦,周利. 火箭贮箱焊接缺陷修复技术研究现状. 电焊机. 2023(03): 31-45 . 百度学术
6. 李晓华,齐影,郑瑞娟,武媛,祝弘滨,崔雷. QT400球墨铸铁摩擦塞焊接头的微观组织和力学性能研究. 热加工工艺. 2023(05): 141-144 . 百度学术
7. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
8. 丁清伟,汪春能,眭怀明,赵引红,陈冬梅. 铝合金机匣预埋管处渗漏机理分析及解决措施. 铸造技术. 2023(09): 873-876 . 百度学术
9. 李德福,王希靖. 6082铝合金摩擦塞补焊接头焊核区晶体特征. 兰州理工大学学报. 2022(03): 7-12 . 百度学术
10. 高彦军,刘西伟,刘旭升,邵震,崔雷. 2060-T8铝锂合金顶锻式摩擦塞补焊接头组织性能研究. 电焊机. 2022(07): 69-75+99 . 百度学术
11. 赵慧慧,高焓,胡蓝,董吉义,尹玉环,崔雷. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化. 焊接. 2021(06): 48-55+64 . 百度学术
12. 胡永鹅,龙琼,韩兴科,何波,王尧,杨秀芳. 铝合金材料焊接方法研究进展. 贵州农机化. 2020(03): 15-19 . 百度学术
其他类型引用(7)