高级检索

电磁超声作用下 Sn-9Zn 钎料在 SiC 表面铺展分析

张茗瑄, 马志鹏, 陈桂娟, 夏法锋, 于心泷

张茗瑄, 马志鹏, 陈桂娟, 夏法锋, 于心泷. 电磁超声作用下 Sn-9Zn 钎料在 SiC 表面铺展分析[J]. 焊接学报, 2022, 43(2): 55-60. DOI: 10.12073/j.hjxb.20210629001
引用本文: 张茗瑄, 马志鹏, 陈桂娟, 夏法锋, 于心泷. 电磁超声作用下 Sn-9Zn 钎料在 SiC 表面铺展分析[J]. 焊接学报, 2022, 43(2): 55-60. DOI: 10.12073/j.hjxb.20210629001
ZHANG Mingxuan, MA Zhipeng, CHEN Guijuan, XIA Fafeng, YU Xinlong. Research on the spreading of Sn-9Zn solder on SiC surface under the effect of electromagnetic ultrasound[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 55-60. DOI: 10.12073/j.hjxb.20210629001
Citation: ZHANG Mingxuan, MA Zhipeng, CHEN Guijuan, XIA Fafeng, YU Xinlong. Research on the spreading of Sn-9Zn solder on SiC surface under the effect of electromagnetic ultrasound[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 55-60. DOI: 10.12073/j.hjxb.20210629001

电磁超声作用下 Sn-9Zn 钎料在 SiC 表面铺展分析

基金项目: 国家自然科学基金资助项目(51674090,51674089)
详细信息
    作者简介:

    张茗瑄,博士研究生;主要研究方向为异种材料连接技术;Email:1295777609@qq.com

    通讯作者:

    马志鹏,博士,教授;Email:mazhipeng77@163.com.

  • 中图分类号: TG454

Research on the spreading of Sn-9Zn solder on SiC surface under the effect of electromagnetic ultrasound

  • 摘要: 基于Comsol Multiphysics软件,通过建立电磁超声辅助钎焊模型,研究洛伦兹力作用下钎料Sn-9Zn在SiC陶瓷表面的铺展行为. 结果表明,在电磁超声作用下,钎料表面出现塌陷并向外铺展,伴随着钎料表面出现振动现象,随后线圈下方的部分钎料断裂并飞溅,中心处钎料收缩. 当线圈通入交变电流时,在周边感生出方向呈周期性转换的交变磁场. 钎料内部洛伦兹力方向整体指向钎料外部,在钎料边缘处逐渐指向母材表面,线圈下方钎料所受水平和垂直方向的洛伦兹力高于其它部分,最高时分别为63.96 和31.2 kN/m3,顶部钎料在洛伦兹力、压力差和“坍塌效应”的共同作用下,促进钎料铺展.
    Abstract: Based on Comsol Multiphysics software, an electromagnetic ultrasonic-assisted brazing model was established to study the spreading behavior of solder Sn-9Zn on the surface of SiC ceramics under the action of Lorentz force. It spreads out, accompanied by the vibration phenomenon on the surface of the solder, and then part of the solder under the coil breaks and splashes, and the solder shrinks in the center. When the coil is fed with an alternating current, an alternating alternating current with a periodic change in direction is induced around the coil. Magnetic field. The direction of the Lorentz force inside the solder points to the outside of the solder as a whole, and gradually points to the surface of the base metal at the edge of the solder. The horizontal and vertical Lorentz forces of the solder under the coil are higher than other parts, and the highest respectively are 63.96 and 31.2 kN/m3, the top brazing filler metal promotes brazing filler metal spreading under the combined action of Lorentz force, pressure difference and "collapse effect".
  • 图  1   洛伦兹力产生机理示意图

    Figure  1.   Schematic diagram of Lorentz force generation mechanism

    图  2   二维轴对称几何模型示意图

    Figure  2.   Schematic diagram of two-dimensional axisymmetric geometric model

    图  3   交变磁场的磁感应分布情况

    Figure  3.   Distribution of magnetic induction of alternating magnetic field. (a) t = T/6; (b) t = 2T/6; (c) t=3T/6; (d) t = 4T/6; (e) t = 5T/6; (f) t = 6T/6

    图  4   静磁场的磁感应分布情况

    Figure  4.   Magnetic induction distribution of static magnetic

    图  5   电磁超声作用下钎料的铺展过程

    Figure  5.   Spreading process of the solder under the action of electromagnetic ultrasound. (a) 0 ms; (b) 11 ms; (c) 25 ms; (d) 38 ms; (e) 42 ms; (f) 44 ms

    图  6   钎料内部洛伦兹力的分布

    Figure  6.   Distribution of Lorentz force inside the solder

    图  7   钎料表面沿x方向的洛伦兹力分布

    Figure  7.   Lorentz force distribution along the x direction on the surface of the solder

    图  8   钎料表面沿y方向的洛伦兹力分布

    Figure  8.   Lorentz force distribution along the y direction on the surface of the solder

    表  1   SiC陶瓷的物理性能

    Table  1   Physical properties of SiC

    弹性模量E1/GPa泊松比$\gamma $密度ρ1/(g·cm−3)
    4500.1423.1
    下载: 导出CSV

    表  2   金属Sn-9Zn的物理性能

    Table  2   The physical properties of Sn-9Zn

    熔点T/℃粘度σ/(MPa·s)密度ρ2/(g·cm−3)
    198.61.62(220 ℃)5.904
    下载: 导出CSV
  • [1]

    Xu Guojing, Leng Xuesong, Jiang Han, et al. Microstructure and strength of ultrasonic-assisted brazed joints of Si3N4/6061Al composites[J]. Journal of Manufacturing Processes, 2020, 54: 89 − 98. doi: 10.1016/j.jmapro.2020.02.046

    [2]

    Zhang Changan, Ji Hongjun, Xu Hongbo, et al. Interfacial microstructure and mechanical properties of ultrasonic-assisted brazing joints between Ti-6Al-4V and ZrO2[J]. Ceramics International, 2020, 46(6): 7733 − 7740. doi: 10.1016/j.ceramint.2019.11.276

    [3] 许志武, 马星, 马琳, 等. 超声波作用下SiCp/Al复合材料焊 缝的凝固组织及其断裂特征[J]. 中国有色金属学报, 2013, 23(1): 63 − 72.

    Xu Zhiwu, Ma Xing, Ma Lin, et al. Solidified microstructure of SiCp/Al composites bonds under ultrasonic vibration and their fracture characteristics[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 63 − 72.

    [4]

    Nagaoka T, Morisada Y, Fukusumi M, et al. Joint strength of aluminum ultrasonic soldered under liquidus temperature of Sn-Zn hypereutectic solder[J]. Journal of Materials Processing Technology, 2009, 209(11): 5054 − 5059. doi: 10.1016/j.jmatprotec.2009.02.003

    [5] 邓呈敏, 程东海, 张华, 等. 纵向直流磁场对铝铜熔钎焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003

    Deng Chengmin, Cheng Donghai, Zhanghua, et al. Effect of microstructure and mechanical properties on Al-Cu welding-brazing joint assisted by longitudinal DC magnetic field[J]. Transactions of the China Welding Institution, 2020, 41(10): 23 − 27. doi: 10.12073/j.hjxb.20200602003

    [6] 王强, 赫冀成, 川合悟, 等. 磁声波对金属凝固组织的影响[J]. 金属学报, 2002, 38(9): 961 − 965.

    Wang Qiang, He Jicheng, Kawai Satoru, et al. Effect of magneto-acoustic waves on solidificaition structures of metal[J]. Acta Metallurgical Sinica, 2002, 38(9): 961 − 965.

    [7] 李阳, 邓安元, 张赛娟, 等. 局部高频磁场作用下金属液面变形和波动行为[J]. 中国有色金属学报, 2017, 27(4): 850 − 858.

    Li Yang, Deng Anyuan, Zhang Saijuan, et al. Metal liquid surface deformation and fluctuation behavior under high-frequency local magnetic field[J]. Chinese Journal of Nonferrous Metals, 2017, 27(4): 850 − 858.

    [8] 邓安元, 徐永义, 王恩刚, 等. 交变磁场作用下金属液面的变形和波动行为[J]. 中国有色金属学报, 2010, 20(4): 736 − 742.

    Deng Anyuan, Xu Yongyi, Wang Engang, et al. Deformation and fluctuation behavior of meniscus with alternating magnetic field in mold[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(4): 736 − 742.

    [9] 邓安元, 王恩刚, 徐永义, 等. 复合磁场作用下金属液面行为的实验研究[J]. 金属学报, 2010, 46(8): 1018 − 1024. doi: 10.3724/SP.J.1037.2010.00066

    Deng Anyuan, Wang Engang, Xu Yongyi, et al. Experimental research on melting surface behavior in mold under compound magnetic field[J]. Acta Metallurgical Sinica, 2010, 46(8): 1018 − 1024. doi: 10.3724/SP.J.1037.2010.00066

    [10]

    Animasaun I L, Mahanthesh B, Jagun A O, et al. Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO-water nanofluid on an upper horizontal surface of a paraboloid of revolution[J]. Journal of Heat Transfer, 2019, 141(2): 022402.1 − 022402.9.

    [11]

    Garzón M, Pedro J Torres. Periodic solutions for the Lorentz force equation with singular potentials[J]. Nonlinear Analysis:Real World Applications, 2020, 56: 1 − 6.

    [12]

    Yue P, Xiao J, Xu K, et al. Mathematical model and analysis method of flow field separation[J]. Physics and Fluids, 2021, 33: 1 − 14.

    [13]

    Zhang J, Ma W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation[J]. Journal of Fluid Mechanics, 2020, 892(A5): 1 − 18.

    [14]

    Wang X, Jiang Y, Qiao Y, et al. Numerical study of electroosmotic slip flow of fractional Oldroyd‐B fluids at high zeta potentials[J]. Electrophoresis, 2020(41): 769 − 777.

    [15]

    Zhou Bofang, Zeng Zhichen, Cai Yuchen, et al. FEM simulation and verification of brazing SiC ceramic with novel Zr-Cu fller metal[J]. Materials, 2019, 12(20): 3380 − 3388. doi: 10.3390/ma12203380

    [16] 牛济泰, 程东锋, 高增, 等. SiC颗粒增强铝基复合材料的连接现 状[J]. 焊接学报, 2019, 40(3): 155 − 160. doi: 10.12073/j.hjxb.2019400090

    Niu Jitai, Cheng Dongfeng, Gao Zeng, et al. Reviews on welding method of SiC particle reinforced aluminum matrix composites[J]. Transactions of the China Welding Institution, 2019, 40(3): 155 − 160. doi: 10.12073/j.hjxb.2019400090

    [17]

    Gancarz T, Pstrus J, Gasior W, et al. Physicochemical properties of Sn-Zn and SAC + Bi alloys[J]. Journal of Electronic Materials, 2013, 42(2): 288 − 293. doi: 10.1007/s11664-012-2336-7

    [18]

    Guo X, Chen C, Kang R, et al. Study of mechanical properties and subsurface damage of quartz glass at high temperature based on MD simulation[J]. Journal of Micromechanics and Molecular Physics, 2019, 4(2): 1 − 14.

    [19]

    Ba J K, Zhang Y, Wang X, et al. Effects of deposition time on the structure and properties of AZO thin films dposited on quartz glass by magnetron sputtering[J]. Key Engineering Materials, 2019, 4763: 63 − 67.

  • 期刊类型引用(6)

    1. 龙伟民,乔瑞林,秦建,宋晓国,李鹏远,樊喜刚,刘代军. 异质材料钎焊技术与应用研究进展. 焊接学报. 2025(04): 1-21 . 本站查看
    2. 杨振文,吴钰洁,雍臻,王颖. 钎焊温度对SiC陶瓷低温接头组织和性能的影响. 天津大学学报(自然科学与工程技术版). 2025(05): 510-519 . 百度学术
    3. 黄赞军,张龙戈,车洪艳,王铁军,董浩,曹睿. MHC/GH4099热等静压扩散焊接头组织演化及断裂机制. 粉末冶金工业. 2024(01): 60-69 . 百度学术
    4. 于心泷,马志鹏,张妍,夏杨嘉雯,张茗瑄. SOFC中YSZ与金属的钎焊封接技术研究进展. 兵器材料科学与工程. 2021(01): 120-126 . 百度学术
    5. 刘炘城,邵海成,乔冠军,陆浩杰,于刘旭,张相召,刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能. 材料导报. 2021(08): 8076-8081 . 百度学术
    6. 甘贵生,江兆琪,陈仕琦,许乾柱,刘聪,黄天,唐羽丰,杨栋华,许惠斌,徐向涛. 电子封装异质材料连接研究进展. 重庆理工大学学报(自然科学). 2021(12): 94-106 . 百度学术

    其他类型引用(5)

图(8)  /  表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  61
  • PDF下载量:  23
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-06-28
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-04-12

目录

    /

    返回文章
    返回