高级检索

搅拌摩擦增材制造关键技术与装备发展

温琦, 刘景麟, 孟祥晨, 黄永宪, 万龙

温琦, 刘景麟, 孟祥晨, 黄永宪, 万龙. 搅拌摩擦增材制造关键技术与装备发展[J]. 焊接学报, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004
引用本文: 温琦, 刘景麟, 孟祥晨, 黄永宪, 万龙. 搅拌摩擦增材制造关键技术与装备发展[J]. 焊接学报, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004
WEN Qi, LIU Jinglin, MENG Xiangchen, HUANG Yongxian, WAN Long. Development in key technique and equipment of friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004
Citation: WEN Qi, LIU Jinglin, MENG Xiangchen, HUANG Yongxian, WAN Long. Development in key technique and equipment of friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 1-10. DOI: 10.12073/j.hjxb.20210616004

搅拌摩擦增材制造关键技术与装备发展

基金项目: 国家自然科学基金青年科学基金项目(52001099);黑龙江省自然科学基金杰出青年项目(JJ2020JQ0085);苏州市科技创新载体计划-新型研发机构新建项目(SZS2020316).
详细信息
    作者简介:

    温琦,博士研究生;主要从事搅拌摩擦增材制造方面的科研工作; Email: wenqilove1993@126.com

    通讯作者:

    万龙,教授,博士研究生导师;Email: wanlong@hit.edu.cn.

  • 中图分类号: TG 456

Development in key technique and equipment of friction stir additive manufacturing

  • 摘要: 搅拌摩擦增材制造 (friction stir additive manufacturing, FSAM) 是一种全新的固相增材技术,解决了材料熔化而产生气孔、裂纹等问题,大幅度提高增材制造零件的力学性能,提升制造组件的结构利用率,被认为是金属增材制造领域的重大突破. 介绍了增材制造技术发展历史及特点,总结了固相增材技术优势,阐述了FSAM技术的基本概念、成形原理、发展趋势、组织微观结构演变行为以及力学性能;归纳了当前FSAM所采用的设备类型及其控制系统,重点分析了该技术未来发展应用所面临的挑战及机遇.
    Abstract: Friction stir additive manufacturing (FSAM) is a novel solid phase additive manufacturing technology. Due to the advantages of avoiding the holes and cracks caused by material fusion and enhancing the mechanical properties of additive manufactured components, it is considered as a great break-through in metallic additive manufacturing. This article introduced the development history and characteristics of additive manufacturing, compared and analyzed the technical features of liquid phase and solid phase additive manufacturing, reviewed the basic conception, forming mechanism, developing trend, texture micro-structure evolution behavior, mechanical property of FSAM. Based on this, the article analyzed the equipment type and control system of FSAM in detail, discussed the influence of technical parameters, and emphatically analyzed the opportunities and challenges of FSAM in future development in application.
  • 近年来铝及铝合金在航空航天领域得到广泛应用[1-3]. 氩弧焊由于其焊后接头质量好、工艺稳定性强、焊接可达性好,广泛用于焊接易氧化、化学性质活泼的铝合金[4-5]. 而在实际应用中,由于铝合金焊接过程中工件表面氧化膜受到阻热作用,严重影响铝合金焊接效率. 利用铝合金氩弧焊交流反接时的“阴极雾化”作用虽然可以保证焊接质量,但是铝合金氩弧焊反接时钨电极烧损严重,并且电弧产热主要集中在阳极,这导致电弧能量的利用效率降低,从而降低了熔深. 通过电源正负半波比例的优化也不能完全消除这一局限,而氦弧焊不仅出现了氧化膜撕裂的现象,使氧化膜破碎、汽化,同时还增加了阳极热功率[6],为彻底突破这一限制提供了可能性. 文中以实际焊接过程中热量传输效率为切入点,阐明了氦弧焊特有氧化膜撕裂现象的产生机理,分析了气体流量对氧化膜撕裂程度及电弧能量利用效率的影响,建立了熔池液面微分方程,为铝合金非熔化极直流正接氦弧焊的推广奠定了理论基础.

    试验选用的5083铝合金板材规格为720 mm × 190 mm × 12 mm,母材的化学成分如表1所示.

    表  1  母材化学成分及含量(质量分数,%)
    Table  1.  Chemical composition of base metal
    MgMnCrCuZnFeAl
    4.0 ~ 4.90.4 ~ 1.00.05 ~ 0.250 ~ 0.10 ~ 0.250 ~ 0.4余量
    下载: 导出CSV 
    | 显示表格

    试验采用直流正接的极性接法进行平板堆焊,同时通过CP80-3-M-540高速相机观察焊接过程中的电弧形态及熔池氧化膜撕裂过程,相机的频率设定为1 000 Hz,拍摄熔池氧化膜撕裂时加装808 nm波长滤光片以滤除弧光,并搭配808 nm的激光背景光源,保护气体为99.995%的纯氦气,焊接工艺试验主要参数如表2所示.

    表  2  试验主要工艺参数
    Table  2.  Processing parameters of experiment
    焊接速度v/(mm·min−1)钨针直径
    d/mm
    气体流量
    Q/(L·min−1)
    针尖到工件
    距离S/mm
    焊接电流
    I/A
    3003.010 ~ 203180
    下载: 导出CSV 
    | 显示表格

    与氩弧形貌不同的是氦弧的形貌呈倒扣碗状,这是由于氦原子分子量较小,更容易受电弧粒子热运动的干扰. 试验过程中得到的电弧及熔池氧化膜撕裂分别如图1图2所示. 高速摄影观测到铝合金氧化膜首先在熔池前端中心尖角撕裂,然后整个熔池表面氧化膜被缓慢推向熔池边缘,直至氧化膜堆叠至达到新的平衡状态并出现新的尖角撕裂,如此在整个焊接过程中循环往复,且随着气体流量的增加,氧化膜撕裂程度减小.

    图  1  不同气体流量下氦弧形态
    Figure  1.  Arc morphology under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  2  不同氦气流量下氧化膜撕裂情况展示
    Figure  2.  Oxide film tearing under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min

    氦弧焊氧化膜撕裂现象降低了电弧与熔池之间的热阻,假设电弧周围达到了局部热力学平衡状态以简化讨论. 氦弧至熔池的热阻$\mathop R\nolimits_{{\rm{int}}}$包括氧化膜热阻以及弧液界面两部分,氧化膜热阻${R_{{\rm{oxi}}}}$由辐射热阻$\mathop R\nolimits_{{\rm{oxi}}}^{{\rm{rad}}}$和传导热阻$R_{{\rm{oxi}}}^ {\rm{c}}$共同确定. 影响氧化膜热阻的因素较多,主要包括氧化膜的类别、特性和厚度、界面冷却速率等,且由于研究条件和方法不尽相同,所得的结论也略有差异[7-8]. 对于最终的电弧能量利用效率,选用单位时间内用来熔化被焊金属的有效热量与设备输出功率之比来表征,即

    $$ E_{{\rm{f}}} = \frac{{c\Delta T\displaystyle\iint\limits_\varOmega {v{\rm{d}}x{\rm{d}}y}}}{{UI}} $$ (1)

    式中:Ω为焊缝闭合轮廓线;$ v $为焊接速度;c为材料热容; ΔT为材料熔点与环境温度的差值;U为电弧电压.

    焊缝横截面结果如图3所示,利用Image-Pro Plus软件对焊缝横截面外轮廓进行特征提取并代入式(1)进一步计算,测量及计算结果如图4所示,其中相对能量效率于20 L/min时最大.

    图  3  不同气流量下焊缝横截面形貌
    Figure  3.  Weld morphology of cross section under different helium flow. (a) 10 L/min; (b) 15 L/min; (c) 20 L/min
    图  4  氦弧焊焊缝横截面测量结果
    Figure  4.  Measuring results of the weld

    熔池深度、深宽比、电弧能量效率均随气体流量增加而增大. 氦弧与熔池间强制对流换热系数Nux会随着气流速度增大而增大,故随着气体流量增加氧化膜撕裂程度虽然减小,电弧相对能量利用效率却提高.

    $$ N{u_{{x}}} = 0.338\,\,7{{\mathop{R}\nolimits} _{\rm{e}}}^{1/2}{{\mathop{P}\nolimits} _{\rm{r}}}^{1/3}\bigg/{\left[ {1 - {{\left( {\frac{{0.046\,\,8}}{{{{\mathop{\rm P}\nolimits} _{\rm{r}}}}}} \right)}^{2/3}}} \right]^{1/4}} $$ (2)

    式中:普朗克数Pr对于气体约等于1;雷诺数Re会随着气流速度增大而增大.

    能够影响电弧的基本作用力有电弧压力$ P $、电弧剪切力$ \tau $、电磁力T、表面张力$ \sigma $、重力G、浮力N、气体压力$ f $[9-10],此处电弧压力是等离子体在工件表面被俘的粘滞压力,与气体压力相区别. 氦弧焊阳极区热功率比氩弧焊提高了一倍[1],电弧温度尤其是阳极区温度对比氩弧有极大提高. 从公式(3)可知,对于剪切力,氦弧为牛顿流体,则氦气的动力粘度 $ \mu $ 随温度升高而增加,故而在相同电流及气体流量情况下电弧剪切力比氩弧明显提升. 此外随着气体流量增加导致强制对流换热系数增大,熔池整体温度提高,熔池中心指向熔池边缘的表面张力随着电弧温度由边缘向中心的升高而下降,因此熔池中心的氧化膜化学键结合强度较低,更容易被撕裂. 也就是说,由熔池中心向熔池边缘会形成由易到难的不同程度的氧化膜撕裂,导致氧化膜破碎,最终在电弧高温下不断汽化.

    $$ \tau {\text{ = }}\mu \frac{{\partial v}}{{\partial y}}{|_{y = 0}} $$ (3)

    无脉冲直流正接氦弧焊熔池震荡并不明显,对于液面的确定文中主要采用静力学平衡方程. 对于氦弧焊熔池液面的确定,取液面与垂直面的交线,令液面与水平方向夹角为$ \alpha $,电弧粒子速度与水平方向夹角$ \alpha ' $,则对于液面与垂直面的交线有静力学平衡方程,即

    $$ \left\{ \begin{gathered} {{N}}\cos \alpha + \sigma \sin \alpha + P\cos \alpha + f\cos \alpha ' - T\sin \alpha = 0 \hfill \\ N\cos \alpha + \sigma \cos \alpha + P\sin \alpha + f\sin \alpha ' - T\cos \alpha = 0 \hfill \\ \end{gathered} \right. $$ (4)

    Mendez等人[11]用数量级缩放法对TIG电弧等离子体速度及电弧压强分布函数做了定量刻画,有

    $$ \left\{ \begin{array}{l} {Z_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.058}{\left( {h/{R_{\rm{c}}}} \right)^{0.34}}{{\hat Z}_{\rm{S}}}\\ {V_{\rm{RS}}} = 0.88{R_{\rm{e}}}^{ - 0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.086}}{{\hat V}_{{\rm{RS}}}}\\ {V_{{\rm{ZS}}}} = 0.88{R_{\rm{e}}}^{0.026}{\left( {h/{R_{\rm{c}}}} \right)^{0.008\,\,6}}{{\hat V}_{{\rm{RS}}}}\\ {P_{\rm{S}}} = 0.88{R_{\rm{e}}}^{0.017}{\left( {h/{R_{\rm{c}}}} \right)^{ - 0.057}}{{\hat V}_{{\rm{RS}}}} \end{array} \right. $$ (5)

    $$ \left\{ \begin{array}{l} {{\hat Z}_{\rm{S}}} = \dfrac{1}{2}{R_{\rm{c}}}\\ {{\hat V}_{{\rm{RS}}}} = {{\hat V}_{{\rm{ZS}}}} = \dfrac{1}{2}\dfrac{{{\mu _0}^{1/2}{R_{\rm{C}}}^2{J_{\rm{C}}}^2}}{{{\rho ^{1/2}}}}\\ {{\hat P}_{\rm{S}}} = \dfrac{1}{2}{\mu _0}{R_{\rm{C}}}^2{J_{\rm{C}}}^2 \end{array} \right. $$ (6)

    式中:$ {\mu _0} $为保护气体的真空磁导率;${R_{\rm{C}}}$为钨针端头直径;${J_{\rm{C}}}$为钨针端头电流密度;h为熔池液面下凹高度. ${Z_{\rm{S}}}$为钨针轴坐标修正值;${\hat Z_{\rm{S}}} $为钨针轴坐标理论估计值;${V_{{\rm{RS}}}}$为电弧等离子体径向速度修正值;${{\hat V}_{{\rm{RS}}}}$为电弧等离子体径向速度理论估计值;$V_{\rm{ZS}} $为电弧等离子体轴向速度修正值;${{\hat V}_{{\rm{ZS}}}} $为电弧等离子体轴向速度理论估计值;PS为压强. 又单位面积内$f = 2/3 n\overline E$$ \overline E $为粒子平均动能. 电弧气氛与大气联通,粒子密度近似为定值,代入联立式(4)~式(6),可得熔池液面与垂直面交线微分方程为

    $$ \frac{{{\rm{d}}y}}{{{\rm{d}}x}} = {{R_{\rm{e}}} ^{0.198}}{(h/{R_{\rm{c}}})^{ - 0.154}} $$ (7)

    从公式(7)可知,在距离熔池中心相同距离处,气体流量的增加导致雷诺数${R_{\rm{e}}}$的增加,要使熔池达到新的平衡,只能使h降低,即熔池液面继续下凹取得更大斜率. 也就是说,液面随气体流量增大下凹程度增加,氧化膜撕裂程度随气体流量增加而减小.

    有研究[12]发现氧化物在熔池表面电弧高温情况下存在解离现象,熔池液面表面张力温度系数实际为正. 气体流量增加增大了电弧与熔池之间强制对流换热系数,在熔池中心温度升高,由熔池边缘指向熔池中心的表面张力增强,导致氧化膜的撕裂程度的减小.

    (1) 氦弧焊阳极热功率的增加削弱了氧化膜之间化学键强度,相对于氩弧焊提高了动力粘度进而增大了电弧剪切力,产生了氧化膜撕裂现象.

    (2) 在试验参数范围内随着气体流量增加氧化膜撕裂程度减小,但焊缝深宽比以及电弧能量效率提高.

    (3) 熔池液面下凹程度增大及熔池中心至边缘表面张力减小,使得氧化膜撕裂程度随氦气流量增加而减弱.

  • 图  1   FSAM技术分类

    Figure  1.   Classification of FSAM

    图  2   FSLW示意图

    Figure  2.   Schematic diagrams of FSLW

    图  3   FSLW过程示意图

    Figure  3.   Schematic diagrams of FSLW process

    图  4   铝合金FSLW应力-应变曲线曲线

    Figure  4.   Stress-strain curve of aluminium alloy FSLW joints

    图  5   摩擦堆焊示意图

    Figure  5.   Schematic diagrams of friction surfacing

    图  6   摩擦堆焊界面微观组织

    Figure  6.   Microstructure between different layers of friction surfacing joint. (a) macroscopic morphology; (b) microstructure of interface

    图  7   摩擦堆焊微观组织

    Figure  7.   Microstructure of friction surfacing joint

    图  8   参数对摩擦堆焊沉积层宽度、厚度、强度的影响

    Figure  8.   Influence of parameters on the width, thickness and strength of friction surfacing.(a) graph of the relationship between thickness and pressure; (b) graph of the relationship between width and pressure; (c) graph of the relationship between strength and pressure

    图  9   FSAP过程示意图

    Figure  9.   Schematic diagrams of FSAP

    图  10   不同形貌材料力学性能

    Figure  10.   Mechanical properties of joints under different morphology materials. (a) tensile strength;(b) yield strength;(c) elongation after fracture

    图  11   粉末AFSP设备

    Figure  11.   AFSP machine using powder

    图  12   IN65 AFSP零件不同区域显微组织

    Figure  12.   Microstructure of different areas of IN65 AFSP

    图  13   WE43性能

    Figure  13.   Performance of WE43. (a) original grain; (b) AFSP grain; (c) microhardness distribution of original material; (d) microhardness distribution of AFSP

    图  14   基于静轴肩搅拌摩擦焊增材制造示意图

    Figure  14.   Schematic diagram of FSAM assisted by stationary shoulder

    图  15   FSAM850搅拌摩擦增材制造设备

    Figure  15.   FSAM equipment of model FSAM850

    图  16   FSAM应用领域

    Figure  16.   Application of FSAM

    表  1   FSLW不同位置晶粒尺寸

    Table  1   Gain size at different positions of FSLW process

    位置平均晶粒
    尺寸d/µm
    最大晶粒尺寸
    dmax/µm
    最小晶粒尺寸
    dmin/µm
    标准差
    σ
    第3层0.986.20.260.83
    第4层0.75.50.280.68
    热力影响区1.114.90.31.04
    下载: 导出CSV

    表  2   FSAM设备性能的对比

    Table  2   Comparison of different FSAM machines

    项目FSW焊机串联机器人并联机器人
    价格
    刚性
    柔性
    使用便捷性
    复杂结构生产力
    下载: 导出CSV
  • [1] 冯小军. 快速制造技术[M]. 北京: 机械工业出版社, 2004.

    Feng Xiaojun. Rapid manufacturing technology[M]. Beijing: China Machine Press, 2004.

    [2]

    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020, 115: 100706.

    [3]

    Kandasamy K. Solid state joining using additive friction stir processing: US10105790B2[P]. 2018.

    [4]

    Palanivel S, Sidhar H, Mishra R S. Friction stir additive manufacturing: Route to high structural performance[J]. Jom, 2015, 67(3): 616 − 621. doi: 10.1007/s11837-014-1271-x

    [5]

    Troysi F D, Brito P P. Development and characterization of an iron aluminide coating on mild steel substrate obtained by friction surfacing and heat treatment[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(9-10): 1 − 8.

    [6]

    Rathee S, Srivastava M, Maheshwari S, et al. Friction based additive manufacturing technologies: principles for building in solid state, benefits, limitations, and applications[M]. Florida: CRC Press, 2018.

    [7]

    Yu H Z, Mishra R S. Additive friction stir deposition: a deformation processing route to metal additive manufacturing[J]. Materials Research Letters, 2021, 9(2): 71 − 83. doi: 10.1080/21663831.2020.1847211

    [8] 王红军. 增材制造的研究现状与发展趋势[J]. 北京信息科技大学学报(自然科学版), 2014, 29(3): 20 − 24.

    Wang Hongjun. Research status and development tendency of additive manufacturing[J]. Journal of Beijing Information Science and Technology University, 2014, 29(3): 20 − 24.

    [9] 朱雪岩. 基于电磁感应加热技术的高温金属3D打印设备研制与工艺研究[D]. 宁波: 宁波大学, 2018.

    Zhu Xueyan. Development of equipment and process of high temperature metal 3D printing based on electromagnetic induction heating technology[D]. Ningbo: Ningbo University, 2018.

    [10]

    Zhao C, Parab N D, Li X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370(6520): 1080 − 1086. doi: 10.1126/science.abd1587

    [11]

    White D. Object consolidation employing friction joining: US 6457629[P]. 2002.

    [12]

    Thomas W M, Norris I M, Staines D. G. et al. Friction stir welding-process developments and variant techniques[R]. The SME Summit. Oconomowoc, USA, 2005.

    [13]

    Lequeu R M, Ehrstrom J. C, Bron F, et al. High-Performance friction stir welded structures using advanced alloys[C]//Aeromat Conference. WA, Seattle, 2006: 85 − 91.

    [14]

    Threadgill P, Russell M. Friction welding of near net shape preforms in Ti-6Al-4V[C]//Proceedings of the 11th World Conference on Titanium. Japan, 2007: 3 − 7.

    [15]

    Dilip J, Rafi H K, Ram G. A new additive manufacturing process based on friction deposition[J]. Transactions of the Indian Institute of Metals, 2011, 64(1-2): 27 − 30. doi: 10.1007/s12666-011-0005-9

    [16]

    Baumann J A. Production of energy efficient preform structures (PEEPS)[R]. The Boeing Company, Chiago, USA, 2012.

    [17]

    Kandasamy K. Solid state joining using additive friction stir processing: US10105790[P]. 2018.

    [18]

    Griffiths R J, Perry M E J, Sietins J M, et al. A Perspective on solid-state additive manufacturing of aluminum matrix composites using meld[J]. Journal of Materials Engineering and Performance, 2018, 28(2): 648 − 656.

    [19] 柯黎明, 邢丽, 刘鸽平. 搅拌摩擦焊工艺及其应用[J]. 焊接技术, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004

    Ke Liming, Xing Li, Liu Geping. Friction stir welding process and its applications[J]. Welding Technology, 2000(2): 7 − 8. doi: 10.3969/j.issn.1002-025X.2000.02.004

    [20]

    Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51(3): 713 − 729. doi: 10.1016/S1359-6454(02)00449-4

    [21]

    Barenj R V. Influence of heat input conditions on microstructure evolution and mechanical properties of friction stir welded pure copper joints[J]. Transactions of the Indian Institute of Metals, 2016, 69(5): 1077 − 1085. doi: 10.1007/s12666-015-0624-7

    [22]

    Li J C, Huang Y X, Wang F F, et al. Enhanced strength and ductility of friction-stir-processed Mg-6Zn alloys via Y and Zr co-alloying[J]. Materials Science and Engineering, 2020, 773: 138877.1 − 138877.7.

    [23]

    Huang Y X, Huang T F, Wan L, et al. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints[J]. Journal of Materials Processing Technology, 2018, 263: 129 − 137.

    [24]

    Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design, 2015, 65: 934 − 952.

    [25]

    Mao Y Q, Ke L M, Huang C P, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1637 − 1647.

    [26]

    Klopstock H, Neelands A R. An improved method of joining or welding metals: British patent specification 572789[P]. 1945-10-24.

    [27]

    Kalvala P R, Akram J, Tshibind A I, et al. Friction spot welding and friction seam welding: US20150360317A1 [P]. 2015-12-17.

    [28]

    Dilip J, Babu S, Rajan S V, et al. Use of friction surfacing for additive manufacturing[J]. Materials and Manufacturing Processes, 2013, 28(2): 189 − 194. doi: 10.1080/10426914.2012.677912

    [29] 刘雪梅, 姚君山, 张彦华. 摩擦堆焊工艺参数的优化选择[J]. 焊接学报, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027

    Liu Xuemei, Yao Junshan, Zhang Yanhua. Optimization for friction surfacing parameters[J]. Transactions of The China Welding Institution, 2004, 25(6): 99 − 102. doi: 10.3321/j.issn:0253-360X.2004.06.027

    [30]

    Fitseva V, Krohn H, Hanke S, et al. Friction surfacing of Ti-6Al-4V: Process characteristics and deposition behaviour at various rotational speeds[J]. Surface & Coatings Technology, 2015, 278: 56 − 63.

    [31]

    Seidi E, Miller S F. A novel approach to friction surfacing: experimental analysis of deposition from radial surface of a consumable tool[J]. Coatings, 2020, 10(11): 17.

    [32]

    Kramer D E, Pinheiro G A, Santos J F, et al. Deposit by friction surfacing and its applications[J]. Welding International, 2010, 24(6): 422 − 431. doi: 10.1080/09507110902844535

    [33]

    Suhuddin U, Mironov S, Krohn H, et al. Microstructural evolution during friction surfacing of dissimilar aluminum alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5224 − 5231. doi: 10.1007/s11661-012-1345-8

    [34]

    Dilip J J S, Janaki Ram G D. Microstructures and properties of friction freeform fabricated borated stainless steel[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3034 − 3042.

    [35]

    Gandra J, Pereira D, Miranda R, et al. Deposition of AA6082-T6 over AA2024-T3 by friction surfacing-Mechanical and wear characterization[J]. Surface and Coatings Technology, 2013, 223: 32 − 40. doi: 10.1016/j.surfcoat.2013.02.023

    [36]

    Vitanov V, Voutchkov I, Bedford G. Neurofuzzy approach to process parameter selection for friction surfacing applications[J]. Surface and Coatings Technology, 2001, 140(3): 256 − 262. doi: 10.1016/S0257-8972(01)01128-8

    [37]

    Rahmati Z, Aval H J, Nourouzi S, et al. Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy[J]. Surface & Coatings Technology, 2020, 397: 125980.

    [38]

    Nanci H, Kumar K, Jianqing S, et al. Additive friction stir deposition of Mg alloys using powder filler materials[C]//TMS Annual Meeting & Exhibition. Gewerbestrasse, Switzerland, 2016: 215-222.

    [39]

    Calvert J R. Microstructure and mechanical properties of WE43 alloy produced via additive friction stir technology[D]. Virginia: Virginia Polytechnic Institute and State University, 2015.

    [40]

    Rivera O, Allison P, Jordon J, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science and Engineering:A, 2017, 69: 1 − 9.

    [41]

    Mukhopadhyay A, Saha P. Mechanical and microstructural characterization of aluminium powder deposit made by friction stir based additive manufacturing[J]. Journal of Materials Processing Technology, 2020, 281: 116648. doi: 10.1016/j.jmatprotec.2020.116648

    [42]

    Rivera O G, Allison P G, Jordon J B, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing[J]. Materials Science & Engineering, 2017, 694(10): 1 − 9.

    [43]

    Patel V, Li W, Xu Y. Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy[J]. Materials & Manufacturing Processes, 2019, 34(2): 177 − 182.

    [44] 吴宝生. 增材式径向搅拌摩擦修复工艺研究[D]. 沈阳: 沈阳航空航天大学, 2019.

    Wu Baosheng. Radial-additive friction stir repairing for exceeded tolerance hole[D]. Shenyang: Shenyang Aerospace University, 2019.

    [45]

    Mendes N, Neto P, Loureiro A, et al. Machines and control systems for friction stir welding: A review[J]. Materials & Design, 2016, 90: 256 − 65.

    [46]

    Franke D, Rudraraju S, Zinn M, et al. Understanding process force transients with application towards defect detection during friction stir welding of aluminum alloys[J]. Journal of Manufacturing Processes, 2020, 54: 251 − 261. doi: 10.1016/j.jmapro.2020.03.003

    [47]

    Meng X C, Huang Y X, Cao J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2020: 100706.

    [48]

    Akram J, Puli R, Kalvala P R, et al. A novel weld transition joint by friction surfacing[J]. Manufacturing Letters, 2014, 2(4): 104 − 107. doi: 10.1016/j.mfglet.2014.07.004

    [49]

    Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386

图(16)  /  表(2)
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  226
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 网络出版日期:  2022-05-29
  • 刊出日期:  2022-07-07

目录

/

返回文章
返回