Analysis of droplet explosion in pulsed GMAW with high strength austenitic filler wire
-
摘要: 针对镍铬系高强度奥氏体焊丝脉冲GMAW工艺熔滴爆炸现象,利用高速摄影技术对不同碳、氮含量焊丝的熔滴过渡行为进行了细致观察. 结果表明,熔滴在脉冲峰值电流期间容易发生爆炸,熔滴爆炸程度与焊丝中氮含量密切相关,而与碳含量没有对应关系,焊丝中氮含量越高熔滴爆炸越严重. 同时发现,熔敷金属中氮的过渡系数随着焊丝中氮含量的增加而降低,氮的损失程度与熔滴爆炸程度一致. 计算结果显示,试验焊丝中氮的溶解度随着温度升高而降低. 综合分析表明,脉冲峰值电流期间,在电弧剧烈高温作用下熔滴中固溶氮因溶解度的降低而瞬间达到过饱和,进而形成气体快速逸出导致熔滴发生爆炸. 该合金系奥氏体焊丝熔滴发生爆炸的临界氮含量为0.22%,为避免熔滴爆炸发生,应限制焊丝中的氮含量在0.22%以下.Abstract: The droplet transfer behavior of the high strength nickel-chromium austenitic filler wires with different carbon and nitrogen content were investigated using high-speed photography technology to reveal the droplet explosion phenomenon in pulsed gas metal arc welding process. The results show that the explosion of the droplets was closely related to the nitrogen content in the wires, but has no corresponding relationship with the carbon content. The higher the nitrogen content in the wire, the more serious the droplet explosion. It was also found that the transfer efficiency of nitrogen in deposited metal was reduced with the increase of the content in the wires. The degree of nitrogen loss was consistent with the degree of droplet explosion. Calculations showed that the solubility of nitrogen in liquid droplet decreased with the increase of temperature. The direct cause of the droplet explosion is that the solid solution nitrogen in the droplet was supersaturated instantaneously and the gas quickly escaped due to the intense high temperature of the arc during the peak current period. The nitrogen content in the austenitic filler wire should be limited to less than 0.22% to avoid droplet explosion.
-
Keywords:
- droplet transfer /
- droplet explosion /
- high strength austenitic wire /
- pulsed GMAW
-
-
表 1 试验用焊丝化学成分(质量分数,%)
Table 1 Chemical compositions of the welding wire
编号 C Si Mn Ni Cr Mo N Al Ti Fe 1 0.029 0.552 6.52 19.22 21.15 6.42 0.385 <0.010 <0.010 余量 2 0.015 0.468 6.44 19.25 21.13 6.67 0.364 0.013 <0.010 余量 3 0.034 0.464 6.50 19.30 21.05 6.63 0.353 0.012 <0.010 余量 4 0.022 0.605 6.53 19.53 21.23 6.22 0.305 <0.010 <0.010 余量 5 0.088 0.615 6.10 19.25 21.21 6.70 0.290 0.012 <0.010 余量 6 0.067 0.524 6.48 19.42 21.45 6.75 0.272 0.011 <0.010 余量 7 0.062 0.553 6.20 19.36 21.08 6.46 0.230 0.014 <0.010 余量 8 0.057 0.486 6.55 19.15 21.43 6.61 0.221 0.012 <0.010 余量 9 0.078 0.564 6.44 19.24 21.22 6.53 0.192 <0.010 <0.010 余量 10 0.087 0.583 6.42 19.25 21.11 6.05 0.184 0.012 <0.010 余量 11 0.075 0.558 6.65 19.34 21.50 6.15 0.172 0.011 <0.010 余量 表 2 熔敷金属氮含量及氮的过渡系数
Table 2 Contents and transfer efficiency of nitrogen in deposited metal
焊丝编号 氮含量w(%) 过渡系数
η(%)焊丝 熔敷金属 1 0.385 0.289 75 2 0.364 0.266 73 3 0.353 0.268 76 4 0.305 0.256 84 5 0.290 0.241 83 6 0.272 0.239 88 7 0.230 0.207 90 8 0.221 0.214 97 9 0.192 0.184 96 10 0.184 0.180 98 11 0.172 0.171 100 表 3 不同温度下焊丝中氮的溶解度
Table 3 Solubility of nitrogen in welding wire at different temperatures
温度T/K 氮含量w(%) 温度T/K 氮含量w(%) 1 773 0.398 2 373 0.179 1 973 0.289 2 573 0.149 2 173 0.223 2 773 0.128 -
[1] Qulgley M B C, Webster J M. Observations of exploding droplets in pulsed-arc GMA welding[J]. Welding Journal, 1971(11): 461 − 466.
[2] Liu S, Siewert T A. Metal transfer in gas metal arc welding: droplet rate[J]. Welding Journal, 1989(2): 52 − 58.
[3] Reiichi Suzuki, Ryu Kakai. Expansion of “MX-MIG process” as pure argon gas shielded welding method-for carbon steel[J]. Kobelco Technology Review, 2013, 32(10): 24 − 32.
[4] Lucas W, Amin M. Effect of wire composition in spray transfer mild steel MIG welding[J]. Metal Construction, 1975(2): 77.
[5] 文元美, 黄石生, 薛家祥, 等. 脉冲MIG焊不稳定过渡过程的观察与分析[J]. 焊接学报, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004 Wen Yuanmei, Huang Shisheng, Xue Jiaxiang, et al. Observation and analysis of unstable metal transfer process in pulsed MIG welding[J]. Transactions of the China Welding Institution, 2008, 29(4): 13 − 17. doi: 10.3321/j.issn:0253-360X.2008.04.004
[6] Woods R A. Metal transfer in aluminum alloys[J]. Welding Journal, 1980(2): 59 − 66.
[7] Reisgen U, Mokrov O. Task of volunerical evaporation and behaviour of droplets in pulsed MIG welding of AlMg alloys[J]. Weld World, 2013, 57: 507 − 514. doi: 10.1007/s40194-013-0044-4
[8] Wang J, Nishimura H, Katayma S. Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminum alloys[J]. Science Technology Weld Join 2011, 16(5): 418-425.
[9] 明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24 − 28. Ming Zhu, Wang Kehong, Wang Wei, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24 − 28.
[10] Yang Dongqing, Xiong Hanying, Huang Yong, et al. Droplet transfer behavior and weld formation of gas metal arc welding for high nitrogen austenitic stainless steel[J]. Journal of Manufacturing Processes, 2021, 65: 491 − 501. doi: 10.1016/j.jmapro.2021.03.048
[11] Wilhelm G, Gött G, Schöpp H, et al. Study of the welding gas influence on a controlled short-arc GMAW process by optical emission spectroscopy[J]. Journal of Physics D:Applied Physics, 2010, 43: 1 − 9.
[12] Haelsig A, Kusch M, Mayr P. Calorimetric analyses of the comprehensive heat flow for gas metal arc welding[J]. Welding in the World, 2015, 59(2): 191 − 199. doi: 10.1007/s40194-014-0193-0
[13] Sarizam Mamat, Titinan Methong, Shinichi Tashiro, et al. Droplet temperature measurement in metal inert gas welding process by using two color measurement method[J]. Journal of the Japan Welding Society, 2017, 35(2): 160 − 164. doi: 10.2207/qjjws.35.160s
[14] Soderstrom E J, Scott K M, Mendez P F. Calorimetric measurement of droplet temperature in GMAW[J]. Welding Journal, 2011, 90(4): 77 − 84.
[15] 陈新民. 金属中气体分析的热力学基础[J]. 中南矿冶学院学报, 1979(1): 1 − 14. Chen Xinmin. The thermodynamic basis of gas analysis in metal[J]. Journal of Central South University(Science and Technology), 1979(1): 1 − 14.
[16] Dimitrov V I, Jekov K. Prediction of the solubility of nitrogen in steels obtained by pressurised electroslag remelting process[J]. Computational Materials Science, 1999, 15(4): 400 − 410. doi: 10.1016/S0927-0256(99)00018-X
[17] Jiang Zhouhua, Li Huabing, Shen Minghui, et al. Manufacture of nickel free high nitrogen austenitic stainless steel[C]//Proceedings of International Conference on High Nitrogen Steels. Jiuzhaigou, China, 2006: 372-380.