Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing
-
摘要: 探索MIG电弧增材制造6061铝合金构件的工艺成形性,并对成形件不同区域的微观组织及力学性能开展研究.结果表明,当送丝速度/焊接速度的比值P在0.5 ~ 1之间,且送丝速度在5 ~ 7 m/min之间时,可获得良好焊道形貌;堆积焊道层与层之间交界处为结合层,其余区域为沉积层,结合层和沉积层呈现出沿堆积高度方向灰白色带依次交替的形貌,并都呈现出各种尺寸大小的气孔多发的状态;显微硬度和拉伸测试发现:沿着堆积方向硬度变化不大,结合层硬度低于沉积层,且硬度波动性更大;不同区域水平方向强度差异不大,堆积方向强度比水平方向略低,平均断后伸长率分别为18%和22.6%,两个方向拉伸断口皆以韧窝为主,属于韧性断裂.Abstract: The deposition formability of MIG wire and arc additive manufacturing of 6061 aluminum alloy components is investigated, and the microstructure and mechanical properties of different areas of the deposited parts are studied. The results show that: when the ratio of wire feeding speed/welding speed(F/T) is between 0.5 and 1, meanwhile the wire feeding speed is between 5 and 7 m/min, a good weld bead morphology can be obtained; the interfaces between layers are the bonding layers, and the rest regions are the deposition layer. The bonding layer and the deposition layer show a morphology of alternating gray and white bands along the stack height direction, bonding layers are easier to produce the pore defect; micro hardness and tensile tests show that the hardness changes little along the deposition direction, the hardness of the bonding layer is lower than that of the deposition layer, besides the hardness fluctuation is greater; there is little difference in the strength and plasticity of the horizontal direction in different regions. ; The strength is slightly higher in the deposition direction than the horizontal direction, and the elongation after fracture is 5.6% and 3.4% respectively. The tensile fractures in both directions are mainly dimples, which indicates ductile fractures.
-
-
表 1 焊丝化学成分(质量分数,%)
Table 1 Chemical composition of welding wire
Si Fe Cu Mn Mg Cr Zn Ti Al 0.4 ~ 0.8 0.7 0.15 ~ 0.4 0.15 0.8 ~ 1.20 0.04 ~ 0.35 0.25 0.15 余量 表 2 探究试验工艺参数
Table 2 Used process parameters in experiments
编号 送丝速度
vs/(m·min−1)焊接速度
v/(mm·s−1)1 ~ 4 2 1,2,3,4 5 ~ 8 3 1.5,3,4.5,6 9 ~ 12 4 2,4,6,8 13 ~ 16 5 2.5,5,7.5,10 17 ~ 20 6 3,6,9,12 21 ~ 24 7 3.5,7,10.5,14 25 ~ 28 8 4,8,12,16 表 3 不同位置拉伸性能对比
Table 3 Comparison of tensile properties in different position
位置 抗拉强度Rm/MPa 屈服强度ReL/MPa 断后伸长率A(%) 竖直 225.6 107.6 22.6 上部 240 122.7 19.2 中部 251 131.3 18.1 下部 239 116.7 16.8 表 4 不同工艺焊接接头性能对比
Table 4 Properties comparison of welding joints by different processes
工艺条件 抗拉强度Rm/MPa 屈服强度ReL/MPa 断后伸长率
A(%)文献[10]-TIG 175 120 9.2 文献[11]-CMT 185.4 155 10.1 文献[12]-EBW 191 156 5.2 文献[13]-FRW 195 121.96 10 -
[1] 陈晓晖, 张述泉, 冉先喆, 等. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42 − 49. doi: 10.12073/j.hjxb.20190818001 Chen Xiaohui, Zhang Shuquan, Ran Xianzhe, et al. Influence of arc power on microstructure and mechanical properties of 316L austenitic stainless steel manufactured by MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(5): 42 − 49. doi: 10.12073/j.hjxb.20190818001
[2] Xiong J, Yin Z, Zhang W. Forming appearance control of arc striking and extinguishing area in multi-layer single-pass GMAW-based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 579 − 586.
[3] Bradford R L, Cao L, Klosterman D, et al. A metal-metal powder formulation approach for laser additive manufacturing of difficult-to-print high-strength aluminum alloys[J]. Materials Letters, 2021, 300: 130113.
[4] Zhu P, Zhang Q, Xu H, et al. Experimental and numerical investigation on plasticity and fracture behaviors of aluminum alloy 6061-T6 extrusions[J]. Archives of Civil and Mechanical Engineering, 2021, 21(3): 1 − 18.
[5] 张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12. Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Laser-induced MIG arc additive manufacturing of aluminum alloy forming size rules[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12.
[6] Li Y, Yu S, Chen Y, et al. Wire and arc additive manufacturing of aluminum alloy lattice structure[J]. Journal of Manufacturing Processes, 2020, 50: 510 − 519. doi: 10.1016/j.jmapro.2019.12.049
[7] Ortega A G, Corona Galvan L, Salem M, et al. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process[J]. Science and Technology of Welding and Joining, 2019, 24(6): 538 − 547. doi: 10.1080/13621718.2018.1564986
[8] Chen Zhang, Ming Gao, Xiaoyan Zeng. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 271: 85 − 92.
[9] Zhou Y, Lin X, Kang N, et al. Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy[J]. Materials Characterization, 2021, 171: 110735. doi: 10.1016/j.matchar.2020.110735
[10] 吴兴欢, 张麦秋, 胡煌辉, 等. 6061铝合金不同焊接方式下接头性能及焊接成本的对比分析[J]. 科技创新导报, 2018, 15(20): 97 − 99. Wu Xinghuan, Zhang Maiqiu, Hu Huanghui, et al. Comparative analysis of joint performance and welding cost under different welding methods of 6061 aluminum alloy[J]. Science and Technology Innovation Herald, 2018, 15(20): 97 − 99.
[11] 刘强, 张亚雄, 张南南. 送丝速度对6061铝合金CMT焊接接头性能的影响[J]. 热加工工艺, 2016, 45(17): 222 − 224. Liu Qiang, Zhang Yaxiong, Zhang Nannan. The effect of wire feeding speed on the properties of 6061 aluminum alloy CMT welded joints[J]. Hot Working Technology, 2016, 45(17): 222 − 224.
[12] 常艳君, 董俊慧, 张毅. 6061铝合金焊接接头的组织与性能分析[J]. 焊接, 2006(1): 21 − 26. Chang Yanjun, Dong Junhui, Zhang Yi. Microstructure and performance analysis of 6061 aluminum alloy welded joints[J]. Welding, 2006(1): 21 − 26.
[13] 邱宇, 孟强, 董继红, 等. 6061-T6铝合金搅拌摩擦焊工艺及性能研究[J]. 塑性工程学报, 2021, 28(2): 86 − 91. Qiu Yu, Meng Qiang, Dong Jihong, et al. Research on the process and properties of friction stir welding of 6061-T6 aluminum alloy[J]. Journal of Plasticity Engineering, 2021, 28(2): 86 − 91.
[14] Derekar K, Lawrence J, Melton G, et al. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components[C]//MATEC Web of Conferences, EDP Sciences, 2019: 05001.
[15] 孙佳孝, 杨可, 王秋雨, 等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665 − 674. Sun Jiaxiao, Yang Ke, Wang Qiuyu, et al. Microstructure and mechanical properties of 5356 aluminum alloy TIG arc additive manufacturing[J]. Acta Metall Sinica, 2021, 57(5): 665 − 674.
[16] 龙琼, 路坊海, 张玉兰, 等. Mg/Al异种金属焊接技术的研究现状及最新进展[J]. 轻金属, 2018(2): 47 − 53. Long Qiong, Lu Fanghai, Zhang Yulan, et al. Research status and latest progress of Mg/Al dissimilar metal welding technology[J]. Light Metal, 2018(2): 47 − 53.
[17] 戴青松, 欧世声, 邓运来, 等. 5083铝合金的热变形组织演变及晶粒度模型[J]. 材料导报, 2017, 31(14): 143 − 146,152. doi: 10.11896/j.issn.1005-023X.2017.014.030 Dai Qingsong, Ou Shisheng, Deng Yunlai, et al. Thermal deformation microstructure evolution and grain size model of 5083 aluminum alloy[J]. Materials Review, 2017, 31(14): 143 − 146,152. doi: 10.11896/j.issn.1005-023X.2017.014.030
[18] Toda H, Oogo H, Uesugi K, et al. Roles of pre-existing hydrogen micropores on ductile fracture[J]. Materials Transactions, 2009, 50(9): 2285 − 2290. doi: 10.2320/matertrans.M2009123
[19] Xue C, Zhang Y, Mao P, et al. Improving mechanical properties of wire arc additively manufactured AA2196 Al-Li alloy by controlling solidification defects[J]. Additive Manufacturing, 2021, 43: 102019.
-
期刊类型引用(1)
1. 王祉冰,王剑,张硕. 基于FAD图法的铁路货车车体断裂评估. 轨道交通装备与技术. 2024(05): 21-25 . 百度学术
其他类型引用(2)