高级检索

基于神经网络的316L不锈钢激光焊焊缝形貌预测

Prediction of weld profile of 316L stainless steel based on generalized regression neural network

  • 摘要: 在316L不锈钢的激光焊接过程中,其焊接工艺参数直接影响焊缝的形貌,建立焊接工艺参数与焊缝几何形状之间的关系对于优化焊接工艺参数,降低焊接成本非常重要. 根据316L不锈钢焊缝二维不光滑轮廓形貌特点,采用分段函数思想,分别使用Hermite插值和最小二乘拟合的方法描述焊缝轮廓,构建广义回归神经网络焊缝二维形貌预测模型. 结果表明,采用Hermite插值的方法能够获得更准确的焊缝形貌,其平均相对误差为−3.49%. 该模型为316L不锈钢激光焊焊缝预测提供一种有效方法.

     

    Abstract: In the laser welding process of 316L stainless steel, the welding process parameters directly affect the appearance of the weld. Establishing the relationship between welding process parameters and weld geometry is very important for optimizing welding process parameters and reducing welding costs. According to the characteristics of the two-dimensional rough contours of 316L stainless steel welds, the idea of piecewise function is used to describe the contours of the welds using Hermite interpolation and least square fitting respectively, and a generalized regression neural network two-dimensional weld topography prediction model is constructed.The experimental results show that the Hermite interpolation method can obtain a more accurate weld profile, with an average relative error of −3.49%. The proposed model provides an effective method for welding seam prediction of 316L stainless steel welding process.

     

/

返回文章
返回