Establishment of microstructure model of welded joint based on improved VORONOI diagram method
-
摘要: 为了从微观尺度研究焊接接头的疲劳裂纹萌生过程,对传统的Voronoi图法进行改进,建立了焊接接头焊缝区柱状晶及细、粗等轴晶混合晶区的微观组织模型. 首先依据金相试验结果将焊缝区划分不同微观区域,通过控制不同微区种子点的密度和位置生成等轴晶及柱状晶微观组织模型,再通过布尔运算合并微区,建立焊缝区混合晶区微观组织模型. 结果表明,该方法建立的焊接接头微观组织模型与真实组织有较高的相似性,将该模型应用于GH4169电子束焊接头疲劳裂纹萌生过程模拟,取得了较好的效果.Abstract: In this study, the traditional Voronoi diagram method was improved, and the microstructure model of columnar crystals and fine and coarse equiaxed mixed crystal structure of the weld zone was established to study the fatigue crack initiation process of micro-scale weld joints. Firstly, the weld zone was divided into different microscopic zone according to the results of metallographic experiments. Then the microstructure model of the mixed crystal zone was created by controlling the density and position of the seed points in different micro zones. Finally, the microstructure model of the integral weld zone was merged by Boolean operation. The results show that the microstructure model of the weld joint established by this method has a high similarity with the real structure. The model is applied to the simulation of the fatigue crack initiation process of the GH4169 electron beam welded joint, which show good agreement with the experimental results.
-
Keywords:
- welded joint /
- microstructure /
- Voronoi diagram method /
- fatigue crack initiation
-
-
-
[1] 李星, 方斌, 徐秀国, 等. 材料微观组织结构三维模拟的研究进展[J]. 材料导报, 2011, 25(S2): 245 − 247. Li Xing, Fang Bin, Xu Xiuguo, et al. Research progress in three-dimensional simulation of material microstructure[J]. Materials Review, 2011, 25(S2): 245 − 247.
[2] 左永基. 考虑电子束焊接头微观组织特性的疲劳裂纹萌生数值模拟[D]. 南京: 南京航空航天大学, 2019. Zuo Yongji. Numerical simulation of fatigue crack initiation considering the microstructure characteristics of electron beam welding joint [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[3] Zyska Andrzej. CA modeling of microsegregation and growth of equiaxed dendrites in the binary Al-Mg alloy[J]. Materials, 2021, 14(12): 3393. doi: 10.3390/ma14123393
[4] 张昭, 胡超平. 搅拌头转速对2024-T3铝合金搅拌摩擦焊接中晶粒生长的影响[J]. 机械工程材料, 2018, 42(3): 80 − 86. doi: 10.11973/jxgccl201803015 Zhang Zhao, Hu Chaoping. Effect of rotation speed of stirring head on grain growth in friction stir welding of 2024-T3 aluminum alloy[J]. Mechanical Engineering Materials, 2018, 42(3): 80 − 86. doi: 10.11973/jxgccl201803015
[5] Zhang T, Lu S H, Wu Y X, et al. Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum alloy by cellular automaton[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1327 − 1337. doi: 10.1016/S1003-6326(17)60154-7
[6] Kim S G, Hwang H S, Huh J Y. Phase-field simulations of dendritic morphologies in hot-dip galvanized Zn-Al coatings[J]. Computational Materials Science, 2021, 186: 110060. doi: 10.1016/j.commatsci.2020.110060
[7] 熊凌轩. GH4169高温合金微观组织的三维EBSD重构及细观力学模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Xiong Lingxuan. Three-dimensional EBSD reconstruction of the microstructure of GH4169 superalloy and study on micromechanics Simulation [D]. Harbin: Harbin Institute of Technology, 2019.
[8] 杨宝林. 某型粉末合金材料微观组织结构的计算机重构[D]. 兰州: 兰州理工大学, 2011. Yang Baolin. Computer reconstruction of microstructure of a certain powder alloy material[D]. Lanzhou: Lanzhou University of Technology, 2011.
[9] Herrera S V, Niffenegger M. Application of hysteresis energy criterion in a microstructure-based model for fatigue crack initiation and evolution in austenitic stainless steel[J]. International Journal of Fatigue, 2017, 100: 84 − 93. doi: 10.1016/j.ijfatigue.2017.03.014
[10] Truong D T, Takeshi I. A computational simulation of martensitic transformation in polycrystal TRIP steel by crystal plasticity FEM with voronoi tessellation[J]. Key Engineering Materials, 2019, 4712: 71 − 77.
[11] Hoshide T, Kusuura K. Life prediction by simulation of crack growth in notched components with different microstructure and under multiaxial fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(2): 201 − 213.
[12] 史君林, 赵建平. 基于Voronoi图金属微观多晶体三维建模方法与拉伸模拟[C]// 中国机械工程学会压力容器分会. 第九届全国压力容器学术会议论文集—压力容器先进技术, 合肥: 合肥工业大学出版社, 2017: 174 − 179. Shi Junlin, Zhao Jianping. Three-dimensional modeling method and tensile simulation of metal micro-polycrystal based on Voronoi diagram [C]// Pressure Vessel Branch of China Mechanical Engineering Society. Proceedings of the Ninth National Conference on Pressure Vessels—Advanced Technology of Pressure Vessel, Hefei: Hefei University of Technology Publishing House, 2017: 174 − 179.
[13] Kramberger J, Jezernik N, Göncz P, et al. Extension of the Tanaka–Mura model for fatigue crack initiation in thermally cut martensitic steels[J]. Engineering Fracture Mechanics, 2009, 77(11): 2040 − 2050.
[14] 牟园伟, 陆山. 基于宏—细观模型的疲劳裂纹萌生数值模拟[J]. 机械强度, 2012, 34(3): 379 − 383. Mou Yuanwei, Lu Shan. Numerical simulation of fatigue crack initiation based on macro-microscopic model[J]. Mechanical strength, 2012, 34(3): 379 − 383.
[15] 王东, 赵军. 基于Voronoi法和随机法的微纳米复合陶瓷刀具材料微观结构建模[J]. 人工晶体学报, 2015, 44(10): 2918 − 2923. doi: 10.3969/j.issn.1000-985X.2015.10.050 Wang Dong, Zhao Jun. Modeling of micro-nano composite ceramic tool material microstructure based on Voronoi method and random method[J]. Chinese Journal of Intraocular Crystal, 2015, 44(10): 2918 − 2923. doi: 10.3969/j.issn.1000-985X.2015.10.050
[16] 刘俊卿, 李蒙, 左帆. 基于晶体塑性理论的疲劳裂纹起始数值模拟[J]. 航空材料学报, 2016, 36(2): 74 − 79. doi: 10.11868/j.issn.1005-5053.2016.2.012 Liu Junqing, LI Meng, Zuo Fan. Numerical simulation of fatigue crack initiation based on crystal plasticity theory[J]. Journal of Aeronautical Materials, 2016, 36(2): 74 − 79. doi: 10.11868/j.issn.1005-5053.2016.2.012
[17] 钟飞. 基于晶体塑性有限元的镍基合金GH4169拉伸性能及疲劳行为研究[D]. 上海: 华东理工大学, 2017. Zhong Fei. Study on tensile properties and fatigue behavior of Nickel base alloy GH4169 based on crystal plastic finite element [D]. Shanghai: East China University of Science and Technology, 2017.
[18] 刘金义, 刘爽. Voronoi图应用综述[J]. 工程图学学报, 2004(2): 125 − 132. Liu Jinyi, Liu Shuang. Overview of Voronoi diagram application[J]. Journal of Engineering Graphics, 2004(2): 125 − 132.
[19] 邓彩艳, 尹庭辉, 龚宝明. TC11钛合金电子束焊接接头超高周疲劳性能[J]. 焊接学报, 2018, 39(4): 23 − 26. doi: 10.12073/j.hjxb.2018390088 Deng Caiyan, Yin Tinghui, Gong Baoming. Properties of very-high-cycle fatigue of TC11 titanium alloy EBW welded joints[J]. Transactions of the China Welding Institution, 2018, 39(4): 23 − 26. doi: 10.12073/j.hjxb.2018390088
[20] Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599
[21] 邓彩艳, 刘庚, 龚宝明, 等. 基于Tanaka-Murad位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003 Deng Caiyan, Liu Geng, Gong Baoming, et al. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. Transactions of the China Welding Institution, 2021, 42(1): 30 − 37. doi: 10.12073/j.hjxb.20200706003
[22] 田伟, 钟燕, 王宇宙, 等. GH4169D合金电子束焊接接头显微组织和持久断裂特征[J]. 稀有金属材料与工程, 2021, 50(3): 1055 − 1061. Tian Wei, Zhong Yan, Wang Yuzhou, et al. Microstructure and stress rupture characteristic of electron beam welded GH4169D alloy[J]. Rare Metal Materials and Engineering, 2021, 50(3): 1055 − 1061.
[23] 许磊. GH4169电子束焊接头拉剪复合应力下疲劳寿命预测模型研究[D]. 南京: 南京航空航天大学, 2021. Xu Lei. Study on fatigue life prediction model of GH4169 electron beam welded joint under tension and shear compound stress[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.